Strain relaxation and size variation of epitaxial Ge nanostructures on 4H-SiC (0001)

IF 2.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kumari Neha, Biswanath Das, Paramita Maiti, Biswarup Satpati, Shikha Varma, Mrinmay Mukhopadhyay, Dipak Kumar Goswami, Parlapalli Venkata Satyam
{"title":"Strain relaxation and size variation of epitaxial Ge nanostructures on 4H-SiC (0001)","authors":"Kumari Neha,&nbsp;Biswanath Das,&nbsp;Paramita Maiti,&nbsp;Biswarup Satpati,&nbsp;Shikha Varma,&nbsp;Mrinmay Mukhopadhyay,&nbsp;Dipak Kumar Goswami,&nbsp;Parlapalli Venkata Satyam","doi":"10.1007/s00339-025-08913-0","DOIUrl":null,"url":null,"abstract":"<div><p>The epitaxial growth of germanium (Ge) on wide-bandgap semiconductors, such as 4H-silicon carbide (4H-SiC), offers a promising platform for integrating group IV materials with high-power electronic substrates. In this work, the morphological and structural aspects of Ge nanostructures on SiC grown using molecular beam epitaxy (MBE) under ultra-high vacuum conditions are reported with an emphasis on particle size variation and strain relaxation. Determination of structural aspects and compositional analysis has been carried out using scanning electron microscopy (SEM) and Cross-sectional transmission electron microscopy (XTEM). Here, XTEM reveals a coherent and atomically sharp Ge/SiC interface, indicating the epitaxial nature of Ge growth. The observed growth follows a Stranski–Krastanov (SK) mode, where an initial wetting layer (~ 0.53 nm) precedes the formation of three-dimensional islands. Strain analysis using high-resolution TEM demonstrates a gradient in lattice relaxation within Ge nanostructures, with strain decreasing from ~ 20.0% at the Ge/SiC interface to ~ 1.5% at ~ 14 nm above the interface. Furthermore, Raman spectroscopy reveals a Ge–Ge vibrational Mode near 300 cm⁻¹, confirming the presence of high-quality Ge nanostructures. Here, we see that as the Ge layer thickness increases, the full width at half maximum (FWHM) of Ge Raman peaks decreases, indicating improvement in the crystalline quality. These findings provide fundamental insights into the epitaxial growth of Ge on SiC, which may improve device integration and is relevant to the advancement in the understanding of conventional low-bandgap materials on wide-bandgap materials.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 11","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08913-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The epitaxial growth of germanium (Ge) on wide-bandgap semiconductors, such as 4H-silicon carbide (4H-SiC), offers a promising platform for integrating group IV materials with high-power electronic substrates. In this work, the morphological and structural aspects of Ge nanostructures on SiC grown using molecular beam epitaxy (MBE) under ultra-high vacuum conditions are reported with an emphasis on particle size variation and strain relaxation. Determination of structural aspects and compositional analysis has been carried out using scanning electron microscopy (SEM) and Cross-sectional transmission electron microscopy (XTEM). Here, XTEM reveals a coherent and atomically sharp Ge/SiC interface, indicating the epitaxial nature of Ge growth. The observed growth follows a Stranski–Krastanov (SK) mode, where an initial wetting layer (~ 0.53 nm) precedes the formation of three-dimensional islands. Strain analysis using high-resolution TEM demonstrates a gradient in lattice relaxation within Ge nanostructures, with strain decreasing from ~ 20.0% at the Ge/SiC interface to ~ 1.5% at ~ 14 nm above the interface. Furthermore, Raman spectroscopy reveals a Ge–Ge vibrational Mode near 300 cm⁻¹, confirming the presence of high-quality Ge nanostructures. Here, we see that as the Ge layer thickness increases, the full width at half maximum (FWHM) of Ge Raman peaks decreases, indicating improvement in the crystalline quality. These findings provide fundamental insights into the epitaxial growth of Ge on SiC, which may improve device integration and is relevant to the advancement in the understanding of conventional low-bandgap materials on wide-bandgap materials.

4H-SiC表面外延锗纳米结构的应变弛豫和尺寸变化
锗(Ge)在宽禁带半导体(如4h -碳化硅(4H-SiC))上的外延生长,为IV族材料与大功率电子衬底的集成提供了一个有前途的平台。本文报道了在超高真空条件下使用分子束外延(MBE)在SiC上生长的Ge纳米结构的形态和结构方面,重点研究了颗粒尺寸变化和应变弛豫。利用扫描电子显微镜(SEM)和横断面透射电子显微镜(XTEM)进行了结构方面的测定和成分分析。在这里,XTEM揭示了一个相干的和原子锋利的Ge/SiC界面,表明了Ge生长的外延性质。观察到的生长遵循Stranski-Krastanov (SK)模式,其中初始湿润层(~ 0.53 nm)先于三维岛屿的形成。高分辨率透射电镜的应变分析表明,Ge纳米结构中的晶格弛豫存在梯度,应变从Ge/SiC界面处的~ 20.0%下降到界面以上~ 14 nm处的~ 1.5%。此外,拉曼光谱揭示了300 cm(⁻¹)附近的Ge - Ge振动模式,证实了高质量Ge纳米结构的存在。在这里,我们看到,随着锗层厚度的增加,锗拉曼峰的半峰全宽度(FWHM)减小,表明晶体质量得到改善。这些发现为Ge在SiC上的外延生长提供了基本的见解,这可能会提高器件的集成度,并与对传统低带隙材料在宽带隙材料上的理解的进展有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信