{"title":"Stellar processes driven by the rise of nuclear collectivity","authors":"José Nicolás Orce","doi":"10.1140/epja/s10050-025-01704-4","DOIUrl":null,"url":null,"abstract":"<div><p>The sudden rise of nuclear collectivity above the pairing gap is revealed in this work as the primary source for the relative increase of the symmetry energy with respect to the ground state, as originally suggested by Donati and collaborators. This finding is uncovered by available data on giant dipole resonances built on excited states and 1<span>\\(\\hbar \\omega \\)</span> shell-model calculations of the myriads of products of electric dipole matrix elements that compose the nuclear dipole polarizability of the ground and first-excited states. At the temperatures involved in stellar environments, a larger symmetry energy impacts stellar collapse, the nucleosynthesis of heavy elements and the nuclear equation of state of hot neutron stars.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":"61 10","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epja/s10050-025-01704-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epja/s10050-025-01704-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The sudden rise of nuclear collectivity above the pairing gap is revealed in this work as the primary source for the relative increase of the symmetry energy with respect to the ground state, as originally suggested by Donati and collaborators. This finding is uncovered by available data on giant dipole resonances built on excited states and 1\(\hbar \omega \) shell-model calculations of the myriads of products of electric dipole matrix elements that compose the nuclear dipole polarizability of the ground and first-excited states. At the temperatures involved in stellar environments, a larger symmetry energy impacts stellar collapse, the nucleosynthesis of heavy elements and the nuclear equation of state of hot neutron stars.
期刊介绍:
Hadron Physics
Hadron Structure
Hadron Spectroscopy
Hadronic and Electroweak Interactions of Hadrons
Nonperturbative Approaches to QCD
Phenomenological Approaches to Hadron Physics
Nuclear and Quark Matter
Heavy-Ion Collisions
Phase Diagram of the Strong Interaction
Hard Probes
Quark-Gluon Plasma and Hadronic Matter
Relativistic Transport and Hydrodynamics
Compact Stars
Nuclear Physics
Nuclear Structure and Reactions
Few-Body Systems
Radioactive Beams
Electroweak Interactions
Nuclear Astrophysics
Article Categories
Letters (Open Access)
Regular Articles
New Tools and Techniques
Reviews.