Comprehensive structural insights and electrochemical evaluation of rhamnose and salicin for green corrosion protection of carbon steel in acidic medium

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-10-08 DOI:10.1039/D5RA06243H
Faisal Al-Odail, Mahmoud A. Bedair, Mohammed A. Alkhalifah and Ahmed M. Abuelela
{"title":"Comprehensive structural insights and electrochemical evaluation of rhamnose and salicin for green corrosion protection of carbon steel in acidic medium","authors":"Faisal Al-Odail, Mahmoud A. Bedair, Mohammed A. Alkhalifah and Ahmed M. Abuelela","doi":"10.1039/D5RA06243H","DOIUrl":null,"url":null,"abstract":"<p >This study presents a comprehensive electrochemical and theoretical evaluation of two naturally occurring organic compounds, Rhamnose and Salicin, as green corrosion inhibitors for carbon steel in 1 M HCl. Electrochemical techniques including Potentiodynamic Polarization (PDP), Electrochemical Impedance Spectroscopy (EIS), and Electrochemical Frequency Modulation (EFM) were employed to assess inhibition performance. At a concentration of 1.0 × 10<small><sup>−3</sup></small> M, Salicin achieved a maximum inhibition efficiency of 96.10%, while Rhamnose reached 91.91%, as determined by PDP. EIS analysis revealed a significant increase in charge transfer resistance (<em>R</em><small><sub>ct</sub></small>) from 19.05 Ω cm<small><sup>2</sup></small> (blank) to 172.27 Ω cm<small><sup>2</sup></small> for Salicin and 121.65 Ω cm<small><sup>2</sup></small> for Rhamnose. The adsorption behavior followed the Langmuir isotherm, with calculated free energies of adsorption <img> of −33.21 kJ mol<small><sup>−1</sup></small> for Salicin and −32.59 kJ mol<small><sup>−1</sup></small> for Rhamnose, indicating spontaneous mixed-mode adsorption. Density Functional Theory (DFT) calculations revealed that Salicin possesses a lower energy gap (Δ<em>E</em> = 6.321 eV) and higher electron transfer capability (Δ<em>N</em> = 0.943) compared to Rhamnose (Δ<em>E</em> = 8.767 eV, Δ<em>N</em> = 0.783), suggesting superior reactivity and adsorption potential. Adsorption locator simulations confirmed stronger binding of Salicin to Fe(110) surfaces, with an adsorption energy of −230.86 kcal mol<small><sup>−1</sup></small> <em>versus</em> −83.58 kcal mol<small><sup>−1</sup></small> for Rhamnose. These findings highlight the potential of Salicin as a highly efficient, eco-friendly corrosion inhibitor and demonstrate the value of integrating molecular-level insights into inhibitor design.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 44","pages":" 37429-37446"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra06243h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra06243h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a comprehensive electrochemical and theoretical evaluation of two naturally occurring organic compounds, Rhamnose and Salicin, as green corrosion inhibitors for carbon steel in 1 M HCl. Electrochemical techniques including Potentiodynamic Polarization (PDP), Electrochemical Impedance Spectroscopy (EIS), and Electrochemical Frequency Modulation (EFM) were employed to assess inhibition performance. At a concentration of 1.0 × 10−3 M, Salicin achieved a maximum inhibition efficiency of 96.10%, while Rhamnose reached 91.91%, as determined by PDP. EIS analysis revealed a significant increase in charge transfer resistance (Rct) from 19.05 Ω cm2 (blank) to 172.27 Ω cm2 for Salicin and 121.65 Ω cm2 for Rhamnose. The adsorption behavior followed the Langmuir isotherm, with calculated free energies of adsorption of −33.21 kJ mol−1 for Salicin and −32.59 kJ mol−1 for Rhamnose, indicating spontaneous mixed-mode adsorption. Density Functional Theory (DFT) calculations revealed that Salicin possesses a lower energy gap (ΔE = 6.321 eV) and higher electron transfer capability (ΔN = 0.943) compared to Rhamnose (ΔE = 8.767 eV, ΔN = 0.783), suggesting superior reactivity and adsorption potential. Adsorption locator simulations confirmed stronger binding of Salicin to Fe(110) surfaces, with an adsorption energy of −230.86 kcal mol−1 versus −83.58 kcal mol−1 for Rhamnose. These findings highlight the potential of Salicin as a highly efficient, eco-friendly corrosion inhibitor and demonstrate the value of integrating molecular-level insights into inhibitor design.

Abstract Image

鼠李糖和水杨苷对碳钢在酸性介质中绿色防腐的综合结构认识和电化学评价
本文对鼠李糖和水杨苷这两种天然有机化合物在1 M HCl中作为碳钢的绿色缓蚀剂进行了电化学和理论评价。电化学技术包括动电位极化(PDP)、电化学阻抗谱(EIS)和电化学调频(EFM)来评估缓蚀性能。PDP测定水杨苷在1.0 × 10−3 M浓度下的抑菌率为96.10%,鼠李糖为91.91%。EIS分析显示,水杨酸和鼠李糖的电荷传递电阻(Rct)分别从19.05 Ω cm2(空白)和172.27 Ω cm2显著增加到121.65 Ω cm2。水杨苷和鼠李糖的吸附自由能分别为- 33.21 kJ mol−1和- 32.59 kJ mol−1,为自发混合模式吸附。密度泛函理论(DFT)计算结果表明,与鼠李糖(ΔE = 8.767 eV, ΔN = 0.783)相比,水杨苷具有更小的能隙(ΔE = 6.321 eV)和更高的电子转移能力(ΔN = 0.943),具有更强的反应活性和吸附潜力。吸附定位器模拟证实水杨苷与Fe(110)表面的结合更强,吸附能为- 230.86 kcal mol−1,而鼠李糖的吸附能为- 83.58 kcal mol−1。这些发现突出了水杨苷作为一种高效、环保的缓蚀剂的潜力,并证明了将分子水平的见解整合到缓蚀剂设计中的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信