{"title":"Grid-Supporting Renewable Energy Systems With Power Electronics Interfaces","authors":"Shuo Yan;Lasantha Meehagapola;Yongheng Yang;Frede Blaabjerg","doi":"10.1109/OJPEL.2025.3615123","DOIUrl":null,"url":null,"abstract":"The growing penetration of renewable energy systems (RESs) into power grids has introduced challenges such as reduced inertia and increased generation instability. To address these issues, there is an urgent need for RESs to actively support grid operations. This essential capability is facilitated by high-performance power conversion systems and advanced control strategies. Among various RESs, wind turbines (WTs) and photovoltaic (PV) systems, equipped with partially or fully rated power electronics converters (PECs), are the most promising solutions. Since these systems often operate below their rated capacity, the available power headroom can be effectively utilised to provide ancillary services. By employing advanced grid-supporting controls and coordination techniques, WT and PV systems can further enhance grid stability by providing voltage regulation, frequency stabilisation, and low-voltage ride-through (LVRT) performance. This paper addresses this timely and critical topic by exploring the contemporary control and coordination strategies that enable WT and PV systems to deliver essential grid-supporting services. The scope of discussion encompasses not only the control strategies for individual RESs but also the system-level coordination using decentralised, distributed, and centralised methods.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"1609-1640"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11182318","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11182318/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The growing penetration of renewable energy systems (RESs) into power grids has introduced challenges such as reduced inertia and increased generation instability. To address these issues, there is an urgent need for RESs to actively support grid operations. This essential capability is facilitated by high-performance power conversion systems and advanced control strategies. Among various RESs, wind turbines (WTs) and photovoltaic (PV) systems, equipped with partially or fully rated power electronics converters (PECs), are the most promising solutions. Since these systems often operate below their rated capacity, the available power headroom can be effectively utilised to provide ancillary services. By employing advanced grid-supporting controls and coordination techniques, WT and PV systems can further enhance grid stability by providing voltage regulation, frequency stabilisation, and low-voltage ride-through (LVRT) performance. This paper addresses this timely and critical topic by exploring the contemporary control and coordination strategies that enable WT and PV systems to deliver essential grid-supporting services. The scope of discussion encompasses not only the control strategies for individual RESs but also the system-level coordination using decentralised, distributed, and centralised methods.