{"title":"Exploring Damping Effect of Inner Control Loops for Grid-Forming VSCs","authors":"Liang Zhao;Xiongfei Wang;Zheming Jin","doi":"10.1109/OJPEL.2025.3614708","DOIUrl":null,"url":null,"abstract":"This paper presents an analytical framework to evaluate the damping contributed by inner control loops in grid-forming voltage-source converters. First, an impedance model is developed to characterize the dynamics of three types of inner loops, with the control-shaped resistive component indicating the damping for synchronous oscillations. Then, inner-outer loop interactions and interaction-induced oscillations are evaluated using the complex torque coefficient, with the damping torque used for stability assessment. The framework offers two benefits: (i) it yields intuitive physical insight into inner-outer loop interactions and oscillation mechanisms; and (ii) it enables inner-loop parameter tuning using electrical damping torque with minimal dependence on outer-loop operating points. The method is exemplified for virtual-admittance and current-control inner loops, where both synchronous and sub-synchronous oscillations are analyzed and mitigated. Time-domain simulations and hardware experiments validate the approach and its findings.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"1595-1608"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11181165","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11181165/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an analytical framework to evaluate the damping contributed by inner control loops in grid-forming voltage-source converters. First, an impedance model is developed to characterize the dynamics of three types of inner loops, with the control-shaped resistive component indicating the damping for synchronous oscillations. Then, inner-outer loop interactions and interaction-induced oscillations are evaluated using the complex torque coefficient, with the damping torque used for stability assessment. The framework offers two benefits: (i) it yields intuitive physical insight into inner-outer loop interactions and oscillation mechanisms; and (ii) it enables inner-loop parameter tuning using electrical damping torque with minimal dependence on outer-loop operating points. The method is exemplified for virtual-admittance and current-control inner loops, where both synchronous and sub-synchronous oscillations are analyzed and mitigated. Time-domain simulations and hardware experiments validate the approach and its findings.