Exploring the Depth From EAST: Efficient Aggregated State-Space Tanh-Tuned Model for Underwater Object Detection

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yili Xu;Xuanxuan Xiao
{"title":"Exploring the Depth From EAST: Efficient Aggregated State-Space Tanh-Tuned Model for Underwater Object Detection","authors":"Yili Xu;Xuanxuan Xiao","doi":"10.1109/LSP.2025.3606841","DOIUrl":null,"url":null,"abstract":"Underwater object detection faces severe challenges due to light attenuation, color distortion, and low contrast. This letter presents EAST-YOLO, an efficient architecture achieving 79.6% average mAP@0.5 across six underwater datasets—2.1% higher than YOLO11n—while maintaining 2.6 M parameters, 6.5 GFLOPs, and 70 FPS real-time performance. Three problem-driven modules address specific underwater challenges: VSS-Enhanced Block for visibility-limited global context modeling with <inline-formula><tex-math>$\\mathcal {O}(N)$</tex-math></inline-formula> complexity, Aggregated Pathway Block for refraction-robust multi-scale detection, and Tanh-Tuned Attention Block for spatially-adaptive feature modulation. Extensive evaluation on RUOD, DUO, URPC2020, UTDAC2020, DFUI, and AUDD datasets demonstrates EAST-YOLO’s effectiveness as a practical solution for resource-constrained underwater applications, with promising robustness across diverse degraded conditions.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"3809-3813"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11153389/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Underwater object detection faces severe challenges due to light attenuation, color distortion, and low contrast. This letter presents EAST-YOLO, an efficient architecture achieving 79.6% average mAP@0.5 across six underwater datasets—2.1% higher than YOLO11n—while maintaining 2.6 M parameters, 6.5 GFLOPs, and 70 FPS real-time performance. Three problem-driven modules address specific underwater challenges: VSS-Enhanced Block for visibility-limited global context modeling with $\mathcal {O}(N)$ complexity, Aggregated Pathway Block for refraction-robust multi-scale detection, and Tanh-Tuned Attention Block for spatially-adaptive feature modulation. Extensive evaluation on RUOD, DUO, URPC2020, UTDAC2020, DFUI, and AUDD datasets demonstrates EAST-YOLO’s effectiveness as a practical solution for resource-constrained underwater applications, with promising robustness across diverse degraded conditions.
从东方探索深度:用于水下目标检测的高效聚合状态空间tanh调谐模型
水下目标检测面临着光衰减、色彩失真和低对比度等严峻挑战。这封信介绍了EAST-YOLO,这是一种高效的架构,在六个水下数据集中平均达到79.6% mAP@0.5,比yolo11n高2.1%,同时保持2.6 M参数,6.5 GFLOPs和70 FPS的实时性能。三个问题驱动模块解决特定的水下挑战:vss增强块用于能见度有限的全局上下文建模,具有$\mathcal {O}(N)$复杂性,聚合路径块用于折射鲁棒多尺度检测,tanh调谐注意力块用于空间自适应特征调制。对RUOD、DUO、URPC2020、UTDAC2020、DFUI和AUDD数据集的广泛评估表明,EAST-YOLO是资源受限水下应用的实用解决方案,在各种退化条件下具有良好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信