Analysis, Design, and Performance Optimization of a Bidirectional Three-Level Neutral-Point-Clamped Dual-Bridge Series Resonant DC–DC Converter for Energy Storage Systems

IF 3.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Song Hu;Lei Han;Rui Wang;Chuan Sun;Yiwang Wang;Ming Lu;Xiaodong Li;Wu Chen
{"title":"Analysis, Design, and Performance Optimization of a Bidirectional Three-Level Neutral-Point-Clamped Dual-Bridge Series Resonant DC–DC Converter for Energy Storage Systems","authors":"Song Hu;Lei Han;Rui Wang;Chuan Sun;Yiwang Wang;Ming Lu;Xiaodong Li;Wu Chen","doi":"10.1109/OJPEL.2025.3616798","DOIUrl":null,"url":null,"abstract":"In this paper, an isolated bidirectional three-level neutral-point-clamped dual-bridge series resonant converter (3L-NPC-DBSRC) is proposed for the wide-voltage range dc-dc applications in energy storage systems, which consists of a neutral-point-clamped (NPC) three-level bridge on the primary side, a LC-type series-resonant tank, and a full bridge on the secondary side. The proposed 3L-NPC-DBSRC is able to realize increased voltage gain and reduced harmonic components in the primary-side high-frequency-link voltages and currents. By using fundamental harmonic analysis (FHA), the steady-state operation principles of 3L-NPC-DBSRC are thoroughly analyzed in both forward and backward power-flow directions. Furthermore, a control algorithm based on globally optimal condition (GOC) is proposed for achieving zero-voltage switching (ZVS) in all switches and minimum root-mean-square (RMS) ac-link current, thus simultaneously reducing the switching and conduction power losses, and eventually resulting in high overall efficiency. Finally, to verify the effectiveness of the proposed 3L-NPC-DBSRC and its control method, both simulations and experiments are carried out on a designed example.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"1641-1655"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11186209","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11186209/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an isolated bidirectional three-level neutral-point-clamped dual-bridge series resonant converter (3L-NPC-DBSRC) is proposed for the wide-voltage range dc-dc applications in energy storage systems, which consists of a neutral-point-clamped (NPC) three-level bridge on the primary side, a LC-type series-resonant tank, and a full bridge on the secondary side. The proposed 3L-NPC-DBSRC is able to realize increased voltage gain and reduced harmonic components in the primary-side high-frequency-link voltages and currents. By using fundamental harmonic analysis (FHA), the steady-state operation principles of 3L-NPC-DBSRC are thoroughly analyzed in both forward and backward power-flow directions. Furthermore, a control algorithm based on globally optimal condition (GOC) is proposed for achieving zero-voltage switching (ZVS) in all switches and minimum root-mean-square (RMS) ac-link current, thus simultaneously reducing the switching and conduction power losses, and eventually resulting in high overall efficiency. Finally, to verify the effectiveness of the proposed 3L-NPC-DBSRC and its control method, both simulations and experiments are carried out on a designed example.
储能系统双向三电平中性点箝位双桥串联谐振DC-DC变换器的分析、设计与性能优化
本文提出了一种用于储能系统大电压范围dc-dc应用的隔离型双向三电平中性点箝位双桥串联谐振变换器(3L-NPC-DBSRC),该变换器由初级侧中性点箝位(NPC)三电平桥、lc型串联谐振槽和次级侧全桥组成。所提出的3L-NPC-DBSRC能够实现提高电压增益和降低一次侧高频链路电压和电流中的谐波分量。利用基频分析(FHA)方法,对3L-NPC-DBSRC在正向和反向潮流方向上的稳态运行原理进行了深入分析。在此基础上,提出了一种基于全局最优条件(GOC)的控制算法,以实现所有开关的零电压开关(ZVS)和最小的交流电流均方根(RMS),从而同时降低开关和导通功率损耗,最终获得较高的整体效率。最后,为了验证所提出的3L-NPC-DBSRC及其控制方法的有效性,在设计实例上进行了仿真和实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信