Distributed Resource Allocation for Human-Autonomy Teaming With Human Preference Uncertainty

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
Yichen Yao;Ryan Mbagna Nanko;Yue Wang;Xuan Wang
{"title":"Distributed Resource Allocation for Human-Autonomy Teaming With Human Preference Uncertainty","authors":"Yichen Yao;Ryan Mbagna Nanko;Yue Wang;Xuan Wang","doi":"10.1109/LCSYS.2025.3604959","DOIUrl":null,"url":null,"abstract":"This letter investigates distributed resource allocation involving multiple autonomous agents and multiple humans, focusing on two challenges: (i) the dependency between autonomous and human agents through interaction; (ii) accounting for human uncertainties where both parties must collectively satisfy globally coupled probabilistic resource constraints. To address these, we first quantify the distribution of human choice behaviors using the maximum likelihood estimation (MLE), where human decisions evolve in response to nearby agent behaviors. Building on this human model, we introduce a novel reformulation that approximates the original probabilistic constraint via a polyhedral inner approximation, which then enables a fully distributed algorithm design over the system’s communication graph while ensuring probabilistic constraint satisfaction. The proposed approach is validated through theoretical analysis and human-subject experiments.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"2327-2332"},"PeriodicalIF":2.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11146544/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter investigates distributed resource allocation involving multiple autonomous agents and multiple humans, focusing on two challenges: (i) the dependency between autonomous and human agents through interaction; (ii) accounting for human uncertainties where both parties must collectively satisfy globally coupled probabilistic resource constraints. To address these, we first quantify the distribution of human choice behaviors using the maximum likelihood estimation (MLE), where human decisions evolve in response to nearby agent behaviors. Building on this human model, we introduce a novel reformulation that approximates the original probabilistic constraint via a polyhedral inner approximation, which then enables a fully distributed algorithm design over the system’s communication graph while ensuring probabilistic constraint satisfaction. The proposed approach is validated through theoretical analysis and human-subject experiments.
考虑人偏好不确定性的人-自治团队的分布式资源配置
这封信研究了涉及多个自治代理和多个人类的分布式资源分配,重点关注两个挑战:(i)自治代理和人类代理之间通过交互的依赖关系;(ii)考虑双方必须共同满足全球耦合概率资源约束的人为不确定性。为了解决这些问题,我们首先使用最大似然估计(MLE)量化人类选择行为的分布,其中人类决策是根据附近代理的行为而进化的。在这个人类模型的基础上,我们引入了一种新的重新表述,通过多面体内部近似近似原始概率约束,然后在确保概率约束满足的同时,在系统的通信图上实现完全分布式算法设计。通过理论分析和人体实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信