Focused thermal energy at atomic microwave antenna sites for ecocatalysis

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ryo Ishibashi, Fuminao Kishimoto, Tatsushi Yoshioka, Hiroki Yamada, Koki Muraoka, Toshiaki Ina, Hiroki Taniguchi, Akira Nakayama, Toru Wakihara, Kazuhiro Takanabe
{"title":"Focused thermal energy at atomic microwave antenna sites for ecocatalysis","authors":"Ryo Ishibashi,&nbsp;Fuminao Kishimoto,&nbsp;Tatsushi Yoshioka,&nbsp;Hiroki Yamada,&nbsp;Koki Muraoka,&nbsp;Toshiaki Ina,&nbsp;Hiroki Taniguchi,&nbsp;Akira Nakayama,&nbsp;Toru Wakihara,&nbsp;Kazuhiro Takanabe","doi":"10.1126/sciadv.ady4043","DOIUrl":null,"url":null,"abstract":"<div >Green transformation demands efficient protocols to convert renewable energy into usable forms. Microwave (MW)–driven catalytic systems offer a promising electrification strategy for chemical processes by enabling targeted, energy-efficient reactions. Unlike conventional heating, MW irradiation can localize energy at catalytic active sites. A major breakthrough is the selective MW heating of isolated metal ions or nanoparticles. This study presents a general catalyst design strategy to control MW-induced heating of single metal ions by tuning the zeolite framework and electrostatic interactions. Key structural and electronic factors governing atomic-scale energy localization are identified. Applying this approach to the reverse water-gas shift reaction results in energy efficiency improvements via targeted heating of single-ion sites. These findings mark a milestone in MW-assisted catalysis, establishing a framework for using MW energy in heterogeneous systems. The work introduces design principles for single-atom-antenna MW catalysts, advancing the development of next-generation catalytic reactors driven by electromagnetic energy.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 41","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ady4043","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ady4043","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Green transformation demands efficient protocols to convert renewable energy into usable forms. Microwave (MW)–driven catalytic systems offer a promising electrification strategy for chemical processes by enabling targeted, energy-efficient reactions. Unlike conventional heating, MW irradiation can localize energy at catalytic active sites. A major breakthrough is the selective MW heating of isolated metal ions or nanoparticles. This study presents a general catalyst design strategy to control MW-induced heating of single metal ions by tuning the zeolite framework and electrostatic interactions. Key structural and electronic factors governing atomic-scale energy localization are identified. Applying this approach to the reverse water-gas shift reaction results in energy efficiency improvements via targeted heating of single-ion sites. These findings mark a milestone in MW-assisted catalysis, establishing a framework for using MW energy in heterogeneous systems. The work introduces design principles for single-atom-antenna MW catalysts, advancing the development of next-generation catalytic reactors driven by electromagnetic energy.

Abstract Image

在原子微波天线上聚焦热能用于生态催化
绿色转型需要有效的协议将可再生能源转化为可用的形式。微波(MW)驱动的催化系统通过实现有针对性的、节能的反应,为化学过程提供了一种有前途的电气化策略。与传统加热不同,毫瓦辐射可以将能量定位在催化活性位点。一个主要的突破是选择性微波加热分离的金属离子或纳米颗粒。本研究提出了一种通用的催化剂设计策略,通过调整沸石框架和静电相互作用来控制mw诱导的单金属离子加热。确定了控制原子尺度能量局域化的关键结构和电子因素。将这种方法应用于逆向水气转换反应,通过有针对性地加热单离子位点,可以提高能源效率。这些发现标志着兆瓦辅助催化的一个里程碑,建立了在多相系统中使用兆瓦能量的框架。介绍了单原子天线微波催化剂的设计原理,推动了下一代电磁驱动催化反应器的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信