Emergent Rashba spin-orbit coupling in bulk gold with buried network of nanoscale interfaces

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shreya Kumbhakar, Banashree Debnath, Tuhin Kumar Maji, Binita Tongbram, Shinjan Mandal, T. Phanindra Sai, T. V. Ramakrishnan, Manish Jain, H. R. Krishnamurthy, Anshu Pandey, Arindam Ghosh
{"title":"Emergent Rashba spin-orbit coupling in bulk gold with buried network of nanoscale interfaces","authors":"Shreya Kumbhakar,&nbsp;Banashree Debnath,&nbsp;Tuhin Kumar Maji,&nbsp;Binita Tongbram,&nbsp;Shinjan Mandal,&nbsp;T. Phanindra Sai,&nbsp;T. V. Ramakrishnan,&nbsp;Manish Jain,&nbsp;H. R. Krishnamurthy,&nbsp;Anshu Pandey,&nbsp;Arindam Ghosh","doi":"10.1126/sciadv.adz1680","DOIUrl":null,"url":null,"abstract":"<div >The Rashba effect, which plays a crucial role in fundamental materials physics and potential spintronics applications, has been engineered in diverse systems, including semiconductor quantum wells, oxide heterostructures, metallic surfaces, topological insulators, ferroelectrics, etc. However, generating it in systems that preserve bulk inversion symmetry (BIS), for example, in bulk metals, has not been possible so far. We demonstrate a strategy to introduce and tune Rashba spin-orbit interaction (SOI) to unprecedented magnitudes in inversion-symmetric solids by incorporating ultrasmall silver nanoparticles in bulk gold. The near-identical lattice constants of Ag and Au allow dense packing of the Ag/Au hetero-interfaces without compromising the global BIS. By varying the density of embedded nanoparticles, we generate Rashba SOI in a bulk metal with coupling strength ~15 meV∙Å, higher than any known system preserving BIS globally, and show up to ~20 times increase in the spin-orbit scattering rate. We argue that the combined effect of charge transfer at the interfaces and polaronic localization enhances the SOI.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 41","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adz1680","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adz1680","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Rashba effect, which plays a crucial role in fundamental materials physics and potential spintronics applications, has been engineered in diverse systems, including semiconductor quantum wells, oxide heterostructures, metallic surfaces, topological insulators, ferroelectrics, etc. However, generating it in systems that preserve bulk inversion symmetry (BIS), for example, in bulk metals, has not been possible so far. We demonstrate a strategy to introduce and tune Rashba spin-orbit interaction (SOI) to unprecedented magnitudes in inversion-symmetric solids by incorporating ultrasmall silver nanoparticles in bulk gold. The near-identical lattice constants of Ag and Au allow dense packing of the Ag/Au hetero-interfaces without compromising the global BIS. By varying the density of embedded nanoparticles, we generate Rashba SOI in a bulk metal with coupling strength ~15 meV∙Å, higher than any known system preserving BIS globally, and show up to ~20 times increase in the spin-orbit scattering rate. We argue that the combined effect of charge transfer at the interfaces and polaronic localization enhances the SOI.

Abstract Image

具有纳米级界面埋藏网络的大块金中的新兴Rashba自旋轨道耦合
Rashba效应在基础材料物理学和潜在的自旋电子学应用中起着至关重要的作用,已经被设计在各种系统中,包括半导体量子阱、氧化物异质结构、金属表面、拓扑绝缘体、铁电体等。然而,到目前为止,在保持体反转对称(BIS)的系统中产生它,例如在大块金属中,是不可能的。我们展示了一种策略,通过在大块金中加入超小银纳米颗粒,将Rashba自旋轨道相互作用(SOI)引入和调整到反转对称固体中前所未有的量级。Ag和Au几乎相同的晶格常数允许Ag/Au异质界面的密集填充,而不会影响全局BIS。通过改变嵌入纳米颗粒的密度,我们在块体金属中产生了耦合强度为~15 meV∙Å的Rashba SOI,比全球任何已知的保持BIS的系统都要高,并且自旋轨道散射率提高了~20倍。我们认为界面电荷转移和极化局域化的共同作用增强了SOI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信