Sunzhenhe Fang, Yang Zhao, Xue Zhang, Fang Yu, Peng Zhang
{"title":"Molecular mechanism underlying phosphate distribution by SULTR family transporter SPDT in Oryza sativa","authors":"Sunzhenhe Fang, Yang Zhao, Xue Zhang, Fang Yu, Peng Zhang","doi":"10.1126/sciadv.ady3442","DOIUrl":null,"url":null,"abstract":"<div >Phosphorus (P) limitation severely affects crop yields. To address the molecular basis of inorganic phosphate (Pi) specific transport within the sulfate transporter (SULTR) family, we determined the cryo–electron microscopy structures of <i>Oryza sativa</i> SULTR-like phosphorus distribution transporter (OsSPDT), a key Pi transporter for grain allocation, in apo- and Pi-binding states. OsSPDT forms a domain-swapped homodimer with each protomer containing an N-terminal domain (NTD), a transmembrane domain (TMD) divided into core and gate subdomains, and a C-terminal sulfate transporter and antisigma factor (STAS) domain. The structure adopts a cytoplasm-facing conformation with Pi coordinated at the core-gate interface. Key residues, including SPDT-unique Ser<sup>170</sup>, mediate Pi specificity within the binding pocket, distinguishing it evolutionarily from sulfate transporters within the SULTR family. Domain-swapping and mutational studies demonstrate functional interdependence of the NTD, TMD, and STAS domains. This work elucidates Pi selectivity in plant SULTR transporters and provides a molecular basis for developing low-phytate rice via OsSPDT gene editing.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 41","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ady3442","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ady3442","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphorus (P) limitation severely affects crop yields. To address the molecular basis of inorganic phosphate (Pi) specific transport within the sulfate transporter (SULTR) family, we determined the cryo–electron microscopy structures of Oryza sativa SULTR-like phosphorus distribution transporter (OsSPDT), a key Pi transporter for grain allocation, in apo- and Pi-binding states. OsSPDT forms a domain-swapped homodimer with each protomer containing an N-terminal domain (NTD), a transmembrane domain (TMD) divided into core and gate subdomains, and a C-terminal sulfate transporter and antisigma factor (STAS) domain. The structure adopts a cytoplasm-facing conformation with Pi coordinated at the core-gate interface. Key residues, including SPDT-unique Ser170, mediate Pi specificity within the binding pocket, distinguishing it evolutionarily from sulfate transporters within the SULTR family. Domain-swapping and mutational studies demonstrate functional interdependence of the NTD, TMD, and STAS domains. This work elucidates Pi selectivity in plant SULTR transporters and provides a molecular basis for developing low-phytate rice via OsSPDT gene editing.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.