Active Transport of Biomimetic Cascaded Nanozymes Across Blood–Brain Barrier to Scavenge ROS and Alleviate Neuroinflammation Against Cerebral Ischemia Reperfusion Injury

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuqi Wu, Jie Xu, Xinxin Wang, Han Li, Fan Wu, Jian Ruan, Dong Chen, Jianpeng Sheng, Dingcheng Zhu, Junqiu Liu, Baiheng Wu
{"title":"Active Transport of Biomimetic Cascaded Nanozymes Across Blood–Brain Barrier to Scavenge ROS and Alleviate Neuroinflammation Against Cerebral Ischemia Reperfusion Injury","authors":"Yuqi Wu, Jie Xu, Xinxin Wang, Han Li, Fan Wu, Jian Ruan, Dong Chen, Jianpeng Sheng, Dingcheng Zhu, Junqiu Liu, Baiheng Wu","doi":"10.1002/adfm.202520000","DOIUrl":null,"url":null,"abstract":"The rational design of potent antioxidative agents with active transport across blood–brain barrier (BBB) is critically required for mitigating ischemic reperfusion‐induced reactive oxygen species (ROS)‐mediated neuroinflammation and neural injury in ischemic stroke therapy. Herein, a biomimetic nanozyme is engineered by integrating copper and selenium, key catalytic sites of natural antioxidant superoxide dismutase and glutathione peroxidase, into mesoporous polydopamine scaffolds (mPDA‐Cu/Se), yielding cascaded enzymatic activities for robust ROS scavenging. This nanozyme is further functionalized with a BBB‐penetrating peptide RVG29 and biocompatible red blood cell membrane (T‐mPDA‐Cu/Se) for enhanced BBB penetration and ischemic neuronal tissues accumulation in a transient middle cerebral artery occlusion rat model, where it effectively mitigates oxidative damage and neuron apoptosis. T‐mPDA‐Cu/Se also mitigates neuroinflammation‐induced injury by inhibiting astrocyte activation, microglia pro‐inflammatory polarization, and proinflammatory cytokines secretion, thus achieving reduced infarct volume and improved neuronal recovery without noticeable systemic toxicity. Collectively, this study provides a promising neuroprotective approach against reperfusion‐induced neuron injury in ischemic stroke.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"10 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202520000","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rational design of potent antioxidative agents with active transport across blood–brain barrier (BBB) is critically required for mitigating ischemic reperfusion‐induced reactive oxygen species (ROS)‐mediated neuroinflammation and neural injury in ischemic stroke therapy. Herein, a biomimetic nanozyme is engineered by integrating copper and selenium, key catalytic sites of natural antioxidant superoxide dismutase and glutathione peroxidase, into mesoporous polydopamine scaffolds (mPDA‐Cu/Se), yielding cascaded enzymatic activities for robust ROS scavenging. This nanozyme is further functionalized with a BBB‐penetrating peptide RVG29 and biocompatible red blood cell membrane (T‐mPDA‐Cu/Se) for enhanced BBB penetration and ischemic neuronal tissues accumulation in a transient middle cerebral artery occlusion rat model, where it effectively mitigates oxidative damage and neuron apoptosis. T‐mPDA‐Cu/Se also mitigates neuroinflammation‐induced injury by inhibiting astrocyte activation, microglia pro‐inflammatory polarization, and proinflammatory cytokines secretion, thus achieving reduced infarct volume and improved neuronal recovery without noticeable systemic toxicity. Collectively, this study provides a promising neuroprotective approach against reperfusion‐induced neuron injury in ischemic stroke.
仿生级联纳米酶主动运输血脑屏障清除活性氧和减轻脑缺血再灌注损伤的神经炎症
在缺血性卒中治疗中,合理设计有效的抗氧化剂,通过血脑屏障(BBB)主动运输,对于减轻缺血再灌注诱导的活性氧(ROS)介导的神经炎症和神经损伤至关重要。本文设计了一种仿生纳米酶,将天然抗氧化超氧化物歧化酶和谷胱甘肽过氧化物酶的关键催化位点铜和硒整合到介孔聚多巴胺支架(mPDA‐Cu/Se)中,产生级联酶活性,具有强大的ROS清除能力。该纳米酶与血脑屏障穿透肽RVG29和生物相容性红血膜(T - mPDA - Cu/Se)进一步功能化,在短暂性大脑中动脉闭塞大鼠模型中增强血脑屏障穿透和缺血神经元组织积累,有效减轻氧化损伤和神经元凋亡。T - mPDA - Cu/Se还可以通过抑制星形胶质细胞激活、小胶质细胞促炎极化和促炎细胞因子分泌来减轻神经炎症诱导的损伤,从而减少梗死面积,改善神经元恢复,而不会产生明显的全身毒性。总的来说,这项研究提供了一种有希望的神经保护方法来对抗缺血性卒中再灌注诱导的神经元损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信