Simultaneously reducing UO22+ and abating organic pollutants by a self-driven photoelectrocatalytic system with urea modified carbon fibre cathode

IF 13.2 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Guolong Tang, Qingyan Zhang, Yuhan Cao, Jiachen Wang, Yaqian Zhang, Linsen Li, Qingyi Zeng
{"title":"Simultaneously reducing UO22+ and abating organic pollutants by a self-driven photoelectrocatalytic system with urea modified carbon fibre cathode","authors":"Guolong Tang, Qingyan Zhang, Yuhan Cao, Jiachen Wang, Yaqian Zhang, Linsen Li, Qingyi Zeng","doi":"10.1016/j.cej.2025.169470","DOIUrl":null,"url":null,"abstract":"Organic pollutants in radioactive wastewater severely inhibit uranium reduction by forming stable complexes with uranyl ions (UO<sub>2</sub><sup>2+</sup>), underscoring the urgency of efficient uranium recovery amid nuclear energy expansion. Herein, we develop an innovative self-driven photoelectrocatalytic (PEC) system synergistically recovering uranium and degrading organics. This system features a urea-modified carbon fibre (Urea-CF) cathode for efficient UO<sub>2</sub><sup>2+</sup> reduction and a hybrid TiO<sub>2</sub> nanorods/silicon solar cell (TNR-SSC) photoanode for rapid pollutant degradation. The Urea-CF cathode, synthesized via hydrothermal urea modification, exhibits an expanded surface area and abundant N-containing functional groups. Under solar illumination, the system simultaneously extracts uranium, degrades organics, and generates electricity without external bias. It demonstrates exceptional versatility across diverse wastewater scenarios, maintaining robust performance under varying reactant concentrations, pH, electrolyte concentrations, and coexisting ions. Remarkably, the system achieves 98.4 % UO<sub>2</sub><sup>2+</sup> reduction and 98.3 % chlortetracycline (CTC) degradation within 120 min in the solution containing 10 mg L<sup>−1</sup> UO<sub>2</sub><sup>2+</sup> and 20 mg L<sup>−1</sup> CTC. The corresponding rate constants are 0.025 min<sup>−1</sup> for UO<sub>2</sub><sup>2+</sup> reduction and 0.032 min<sup>−1</sup> for CTC degradation. Additionally, this PEC system maintains &gt;95 % removal efficiency while achieving &gt;80 % recovery of uranium over 50 consecutive cycles. This work presents a sustainable strategy for radioactive wastewater remediation, coupling resource recovery with energy harvesting.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"109 1","pages":""},"PeriodicalIF":13.2000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2025.169470","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Organic pollutants in radioactive wastewater severely inhibit uranium reduction by forming stable complexes with uranyl ions (UO22+), underscoring the urgency of efficient uranium recovery amid nuclear energy expansion. Herein, we develop an innovative self-driven photoelectrocatalytic (PEC) system synergistically recovering uranium and degrading organics. This system features a urea-modified carbon fibre (Urea-CF) cathode for efficient UO22+ reduction and a hybrid TiO2 nanorods/silicon solar cell (TNR-SSC) photoanode for rapid pollutant degradation. The Urea-CF cathode, synthesized via hydrothermal urea modification, exhibits an expanded surface area and abundant N-containing functional groups. Under solar illumination, the system simultaneously extracts uranium, degrades organics, and generates electricity without external bias. It demonstrates exceptional versatility across diverse wastewater scenarios, maintaining robust performance under varying reactant concentrations, pH, electrolyte concentrations, and coexisting ions. Remarkably, the system achieves 98.4 % UO22+ reduction and 98.3 % chlortetracycline (CTC) degradation within 120 min in the solution containing 10 mg L−1 UO22+ and 20 mg L−1 CTC. The corresponding rate constants are 0.025 min−1 for UO22+ reduction and 0.032 min−1 for CTC degradation. Additionally, this PEC system maintains >95 % removal efficiency while achieving >80 % recovery of uranium over 50 consecutive cycles. This work presents a sustainable strategy for radioactive wastewater remediation, coupling resource recovery with energy harvesting.
尿素改性碳纤维阴极自驱动光电催化系统同时还原UO22+和减少有机污染物
放射性废水中的有机污染物通过与铀酰离子(UO22+)形成稳定的配合物,严重抑制了铀的还原,凸显了核能扩张背景下高效回收铀的紧迫性。在此,我们开发了一种创新的自驱动光电催化(PEC)系统,协同回收铀和降解有机物。该系统采用尿素改性碳纤维(尿素- cf)阴极,用于高效还原UO22+;采用TiO2纳米棒/硅太阳能电池(TNR-SSC)混合光阳极,用于快速降解污染物。经水热尿素改性制备的尿素- cf阴极具有较大的比表面积和丰富的含n官能团。在阳光照射下,该系统同时提取铀,降解有机物,并在没有外部偏压的情况下发电。它在不同的废水场景中表现出卓越的多功能性,在不同的反应物浓度、pH值、电解质浓度和共存离子下保持稳定的性能。值得注意的是,在含有10 mg L−1 UO22+和20 mg L−1 CTC的溶液中,该系统在120 min内实现了98.4% % UO22+的还原和98.3% %的氯霉素(CTC)的降解。UO22+的还原速率常数为0.025 min−1,CTC的降解速率常数为0.032 min−1。此外,该PEC系统在50个连续循环中保持了95% %的去除率,同时实现了80% %的铀回收率。本研究提出了一种可持续的放射性废水修复策略,将资源回收与能量收集结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信