{"title":"Mitigating perfluorooctanoic acid inhibition in electrochemically-assisted spiral upflow anaerobic membrane reactor for wastewater treatment: EPS interaction-desorption dynamics and Metabolic pathway reconstruction","authors":"Yijing Gao, Zhaobin Liu, Yibo Sun, Jiandong Wang, Xintao Wu, Xueqin Lu, Guangyin Zhen","doi":"10.1016/j.watres.2025.124761","DOIUrl":null,"url":null,"abstract":"The widespread occurrence of perfluorooctanoic acid (PFOA) in industrial wastewater poses a major challenge to anaerobic treatment systems due to its chemical stability and persistence. Here, an electrochemical spiral upflow anaerobic membrane reactor (EC-SU-AnMBR) was developed by integrating a Ru-Ir/Ti-mesh-wrapped hollow-fiber membrane anode and a spiral Ti-mesh cathode to facilitate PFOA desorption and detoxification. PFOA readily accumulated in tightly bound extracellular polymeric substances (EPS) under open-circuit mode via hydrophobic interactions and electrostatic adsorption, disrupting anaerobic granular sludge (AnGS) structure and impairing microbial functionality. Electrochemical regulation (closed-circuit) effectively alleviated PFOA inhibition, achieving COD removal of 80.7% (<em>vs</em>. 66.7%) and a 1.5-fold higher CH<sub>4</sub> recovery (227.7 <em>vs</em>. 140.8 mL/g COD/d). Electric field-migration and bioanode-membrane interception/oxidation together weakened PFOA-AnGS binding capability by altering EPS structural stability and interaction-desorption dynamics, decreasing PFOA retention rate in the bioreactor from initial 60.4% to 2.1% (<em>p</em> < 0.01) and reinforcing sludge regranulation. Further analysis demonstrated that the bioelectrocatalysis upregulated the relative abundance of functional genes involved in glucose metabolism (<em>pfk, por</em>, and <em>ackA</em>) and methanogenesis (<em>fwd, mtr</em>, and <em>mcr</em>) by selectively enriching hydrolytic/acidogenic bacteria and syntrophic-methanogenic consortia (<em>Smithellaceae, Kosmotogaceae</em>, and <em>Methanotrichaceae</em>) at both bioelectrodes. This study proposes a promising EC-SU-AnMBR system for the sustainable treatment of PFOA-contaminated wastewater and elucidates the metagenome-informed metabolic adaptation mechanisms under PFOA stress.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"89 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.124761","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The widespread occurrence of perfluorooctanoic acid (PFOA) in industrial wastewater poses a major challenge to anaerobic treatment systems due to its chemical stability and persistence. Here, an electrochemical spiral upflow anaerobic membrane reactor (EC-SU-AnMBR) was developed by integrating a Ru-Ir/Ti-mesh-wrapped hollow-fiber membrane anode and a spiral Ti-mesh cathode to facilitate PFOA desorption and detoxification. PFOA readily accumulated in tightly bound extracellular polymeric substances (EPS) under open-circuit mode via hydrophobic interactions and electrostatic adsorption, disrupting anaerobic granular sludge (AnGS) structure and impairing microbial functionality. Electrochemical regulation (closed-circuit) effectively alleviated PFOA inhibition, achieving COD removal of 80.7% (vs. 66.7%) and a 1.5-fold higher CH4 recovery (227.7 vs. 140.8 mL/g COD/d). Electric field-migration and bioanode-membrane interception/oxidation together weakened PFOA-AnGS binding capability by altering EPS structural stability and interaction-desorption dynamics, decreasing PFOA retention rate in the bioreactor from initial 60.4% to 2.1% (p < 0.01) and reinforcing sludge regranulation. Further analysis demonstrated that the bioelectrocatalysis upregulated the relative abundance of functional genes involved in glucose metabolism (pfk, por, and ackA) and methanogenesis (fwd, mtr, and mcr) by selectively enriching hydrolytic/acidogenic bacteria and syntrophic-methanogenic consortia (Smithellaceae, Kosmotogaceae, and Methanotrichaceae) at both bioelectrodes. This study proposes a promising EC-SU-AnMBR system for the sustainable treatment of PFOA-contaminated wastewater and elucidates the metagenome-informed metabolic adaptation mechanisms under PFOA stress.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.