Jiujiu Tian, Xiaojiang Mu, Yitong Wang, Hailan Zhao, Lu Yin, Fan Zhang, Xiaoyang Wang, Lei Miao
{"title":"Hierarchical solar interface evaporator derived from natural multilevel plant leaves for high-efficiency desalination","authors":"Jiujiu Tian, Xiaojiang Mu, Yitong Wang, Hailan Zhao, Lu Yin, Fan Zhang, Xiaoyang Wang, Lei Miao","doi":"10.1016/j.cej.2025.169468","DOIUrl":null,"url":null,"abstract":"Solar-driven interfacial evaporation has emerged as a sustainable strategy for seawater desalination. However, achieving both high energy utilization and ultrafast evaporation under standard solar illumination remains challenging. In this work, we present a hierarchical solar interface evaporator derived from carbonized natural plant leaves, which retain intrinsic multilevel architectures including vascular channels, surface micro-textures, and interlayer porosity. These structures facilitate efficient water transport, broad-spectrum light absorption, and rapid vapor escape. More importantly, the hierarchical system enables multistage energy utilization by coupling direct solar absorption with passive environmental energy harvesting and latent heat recycling from upper to lower evaporation stages. As a result, the 9-stage evaporator attains an exceptionally high evaporation rate of 6.12 kg m<sup>−2</sup> h<sup>−1</sup> for 1 h under 1-sun (1 kW m<sup>−2</sup>) without external energy input, significantly surpassing the thermodynamic limit of conventional single-stage systems. The system also exhibits excellent long-term stability and salt rejection in continuous desalination tests. This study demonstrates the feasibility of using carbonized natural materials to construct low-cost, high-efficiency evaporators and offers new insights into multistage energy utilization strategies for practical water purification applications.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"89 1","pages":""},"PeriodicalIF":13.2000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2025.169468","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solar-driven interfacial evaporation has emerged as a sustainable strategy for seawater desalination. However, achieving both high energy utilization and ultrafast evaporation under standard solar illumination remains challenging. In this work, we present a hierarchical solar interface evaporator derived from carbonized natural plant leaves, which retain intrinsic multilevel architectures including vascular channels, surface micro-textures, and interlayer porosity. These structures facilitate efficient water transport, broad-spectrum light absorption, and rapid vapor escape. More importantly, the hierarchical system enables multistage energy utilization by coupling direct solar absorption with passive environmental energy harvesting and latent heat recycling from upper to lower evaporation stages. As a result, the 9-stage evaporator attains an exceptionally high evaporation rate of 6.12 kg m−2 h−1 for 1 h under 1-sun (1 kW m−2) without external energy input, significantly surpassing the thermodynamic limit of conventional single-stage systems. The system also exhibits excellent long-term stability and salt rejection in continuous desalination tests. This study demonstrates the feasibility of using carbonized natural materials to construct low-cost, high-efficiency evaporators and offers new insights into multistage energy utilization strategies for practical water purification applications.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.