{"title":"Nuclear pore passage of the HIV capsid is driven by its unusual surface amino acid composition.","authors":"Liran Fu,Shiya Cheng,Dietmar Riedel,Leonie Kopecny,Melina Schuh,Dirk Görlich","doi":"10.1038/s41594-025-01684-5","DOIUrl":null,"url":null,"abstract":"Nuclear transport receptors (NTRs) carry cargo across the permeability barrier of nuclear pore complexes (NPCs)-an FG phase condensed from disordered but cohesive FG-repeat domains. This phase repels inert macromolecules but allows NTR passage. When the human immunodeficiency virus (HIV) infects nondividing cells, its capsid is transported into nuclei not like a cargo but crosses NPCs like an NTR. Here we uncovered the molecular determinants of the capsid's NTR behavior. The FG-binding pocket is insufficient. Hexameric and pentameric capsomers contribute. The highly exposed outer capsid surface is key. It lacks FG-repulsive charged residues (K, D and E) that are very abundant on other protein surfaces. FG-attractive residues dominate the capsid surface instead. Introducing FG-repulsive amino acids impedes FG phase partitioning, NPC targeting and NPC passage of assembled capsids. Capsids are, thus, made soluble in the FG phase by a myriad of transient FG-attractive interactions originating from individual surface side chains. We propose that CPSF6 releases the capsid from NPCs by masking its FG-attractive surface and switching the capsid to an FG-repulsive species.","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature structural & molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41594-025-01684-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nuclear transport receptors (NTRs) carry cargo across the permeability barrier of nuclear pore complexes (NPCs)-an FG phase condensed from disordered but cohesive FG-repeat domains. This phase repels inert macromolecules but allows NTR passage. When the human immunodeficiency virus (HIV) infects nondividing cells, its capsid is transported into nuclei not like a cargo but crosses NPCs like an NTR. Here we uncovered the molecular determinants of the capsid's NTR behavior. The FG-binding pocket is insufficient. Hexameric and pentameric capsomers contribute. The highly exposed outer capsid surface is key. It lacks FG-repulsive charged residues (K, D and E) that are very abundant on other protein surfaces. FG-attractive residues dominate the capsid surface instead. Introducing FG-repulsive amino acids impedes FG phase partitioning, NPC targeting and NPC passage of assembled capsids. Capsids are, thus, made soluble in the FG phase by a myriad of transient FG-attractive interactions originating from individual surface side chains. We propose that CPSF6 releases the capsid from NPCs by masking its FG-attractive surface and switching the capsid to an FG-repulsive species.