Unlocking the Potential of Phosphorus Anodes for Sodium-Ion Batteries via Tailored Reversible Na/Polyphosphide Chemistry.

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xin Guo,Shijian Wang,Jiaao Wang,Hong Gao,Zefu Huang,Weihong Lai,Wei Kong Pang,Jiangtao Qu,Mai H Nguyen,Cheng-Jie Yang,Chung-Li Dong,Hao Liu,Graeme Henkelman,Michel Armand,Doron Aurbach,Guoxiu Wang
{"title":"Unlocking the Potential of Phosphorus Anodes for Sodium-Ion Batteries via Tailored Reversible Na/Polyphosphide Chemistry.","authors":"Xin Guo,Shijian Wang,Jiaao Wang,Hong Gao,Zefu Huang,Weihong Lai,Wei Kong Pang,Jiangtao Qu,Mai H Nguyen,Cheng-Jie Yang,Chung-Li Dong,Hao Liu,Graeme Henkelman,Michel Armand,Doron Aurbach,Guoxiu Wang","doi":"10.1002/anie.202509929","DOIUrl":null,"url":null,"abstract":"To surmount the inherent limitations and fully harness the remarkable ultra-high specific capacity (2,596 mAh g-1) of phosphorus (P) anode for sodium-ion batteries (SIBs), we unveil an alternative fast and reversible electrochemical pathway based on Na2P16↔Na3P, which transcends the barriers posed by sluggish reaction kinetics in solid-state red P. It entails the immobilization of dissolved sodium polyphosphide (Na2P16) onto carbon cloth (CC) matrices via robust C─O─P bonding (Na2P16@CC), and the intrinsic superior malleability of Na2P16 effectively mitigates the issue of electrode pulverization caused by volumetric changes of red P during (de)sodiation. Additionally, the profound chemical adsorption of surface oxygen-doped CC toward phosphorus species and the utilization of weakly solvating cyclic carbonate solvents synergistically inhibit the vexing dissolution of high-order polyphosphides in the electrolyte. By capitalizing on the advances of the novel reaction mechanism, the Na2P16@CC composite anode material achieves improved sodium storage performance with a high initial reversible capacity of 1.75 mAh cm-2 at 0.1 mA cm-2 and a capacity retention of 81% over 600 cycles. This work opens an avenue toward the rational design of P-based anodes for high-energy SIBs.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"101 1","pages":"e202509929"},"PeriodicalIF":16.9000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202509929","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To surmount the inherent limitations and fully harness the remarkable ultra-high specific capacity (2,596 mAh g-1) of phosphorus (P) anode for sodium-ion batteries (SIBs), we unveil an alternative fast and reversible electrochemical pathway based on Na2P16↔Na3P, which transcends the barriers posed by sluggish reaction kinetics in solid-state red P. It entails the immobilization of dissolved sodium polyphosphide (Na2P16) onto carbon cloth (CC) matrices via robust C─O─P bonding (Na2P16@CC), and the intrinsic superior malleability of Na2P16 effectively mitigates the issue of electrode pulverization caused by volumetric changes of red P during (de)sodiation. Additionally, the profound chemical adsorption of surface oxygen-doped CC toward phosphorus species and the utilization of weakly solvating cyclic carbonate solvents synergistically inhibit the vexing dissolution of high-order polyphosphides in the electrolyte. By capitalizing on the advances of the novel reaction mechanism, the Na2P16@CC composite anode material achieves improved sodium storage performance with a high initial reversible capacity of 1.75 mAh cm-2 at 0.1 mA cm-2 and a capacity retention of 81% over 600 cycles. This work opens an avenue toward the rational design of P-based anodes for high-energy SIBs.
通过定制的可逆钠/聚磷酸盐化学释放钠离子电池磷阳极的潜力。
为了克服固有的局限性并充分利用钠离子电池(sib)磷(P)阳极显著的超高比容量(2,596 mAh g-1),我们揭示了一种基于Na2P16↔Na3P的替代快速可逆电化学途径,它超越了固态红P中缓慢反应动力学所造成的障碍。它需要通过稳健的C─O─P键将溶解的聚磷酸钠(Na2P16)固定在碳布(CC)基质上(Na2P16@CC)。Na2P16固有的优越延展性有效缓解了(脱)钠化过程中红P体积变化引起的电极粉化问题。此外,表面氧掺杂的CC对磷的深度化学吸附和弱溶剂化环碳酸盐溶剂的利用协同抑制了高阶聚磷在电解质中的溶解。通过利用新反应机理的进展,Na2P16@CC复合阳极材料实现了改进的钠存储性能,在0.1 mA cm-2下具有1.75 mAh cm-2的高初始可逆容量,并且在600次循环中容量保持率为81%。这项工作为高能sib的p基阳极的合理设计开辟了一条道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信