Micro-nano microbial fuel cell-driven bioelectrochemical tumor therapy.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ruiyan Li,Yong Kang,Nana Ran,Gaoli Niu,Yueyue Fan,Yijing Zhang,Jiamin Ye,Xue Yuan,Jiacheng Shi,Mengbin Ding,Yuhan Zhang,Xiaoyuan Ji
{"title":"Micro-nano microbial fuel cell-driven bioelectrochemical tumor therapy.","authors":"Ruiyan Li,Yong Kang,Nana Ran,Gaoli Niu,Yueyue Fan,Yijing Zhang,Jiamin Ye,Xue Yuan,Jiacheng Shi,Mengbin Ding,Yuhan Zhang,Xiaoyuan Ji","doi":"10.1038/s41467-025-64023-8","DOIUrl":null,"url":null,"abstract":"Colorectal cancer remains one of the most challenging malignancies to treat due to its intestinal physiological barrier, extracellular interstitial barrier, and immunosuppressive tumor microenvironment. Here we develop a micro-nano microbial fuel cell system, integrating Desulfovibrio desulfuricans (Dsv) as a biological electron donor and MnO2 as a catalytic electron acceptor, to achieve bioelectrochemical tumor modulation. The Dsv@MnO2-NE-PEG system, featuring norepinephrine-enhanced mucosal adhesion and PEG-mediated mucus penetration, exhibits superior tumor colonization efficiency, prolonged retention, and robust anti-tumor activity. Mechanistically, this system disrupts lactate accumulation in the tumor microenvironment, catalyzes reactive oxygen species generation, and induces pyroptosis instead of apoptosis, thereby enhancing tumor antigen release and immune activation. Further investigations reveal that Mn2+ generated from MnO2 reduction activates the cGAS-STING pathway, promoting dendritic cell maturation, macrophage polarization toward the M1 phenotype, and enhancing CD8+ T cell infiltration while reducing regulatory T cell populations, effectively converting an immunosuppressive tumor into an immunoactive environment.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"10 1","pages":"8989"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64023-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Colorectal cancer remains one of the most challenging malignancies to treat due to its intestinal physiological barrier, extracellular interstitial barrier, and immunosuppressive tumor microenvironment. Here we develop a micro-nano microbial fuel cell system, integrating Desulfovibrio desulfuricans (Dsv) as a biological electron donor and MnO2 as a catalytic electron acceptor, to achieve bioelectrochemical tumor modulation. The Dsv@MnO2-NE-PEG system, featuring norepinephrine-enhanced mucosal adhesion and PEG-mediated mucus penetration, exhibits superior tumor colonization efficiency, prolonged retention, and robust anti-tumor activity. Mechanistically, this system disrupts lactate accumulation in the tumor microenvironment, catalyzes reactive oxygen species generation, and induces pyroptosis instead of apoptosis, thereby enhancing tumor antigen release and immune activation. Further investigations reveal that Mn2+ generated from MnO2 reduction activates the cGAS-STING pathway, promoting dendritic cell maturation, macrophage polarization toward the M1 phenotype, and enhancing CD8+ T cell infiltration while reducing regulatory T cell populations, effectively converting an immunosuppressive tumor into an immunoactive environment.
微纳微生物燃料电池驱动的生物电化学肿瘤治疗。
结直肠癌由于其肠道生理屏障、细胞外间质屏障和免疫抑制的肿瘤微环境,仍然是最具挑战性的恶性肿瘤之一。在此,我们开发了一种微纳微生物燃料电池系统,将脱硫弧菌(Dsv)作为生物电子供体,MnO2作为催化电子受体,实现生物电化学肿瘤调节。Dsv@MnO2-NE-PEG系统具有去甲肾上腺素增强的粘膜粘附和peg介导的粘液渗透,具有优越的肿瘤定殖效率,延长滞留时间和强大的抗肿瘤活性。从机制上讲,该系统破坏肿瘤微环境中乳酸的积累,催化活性氧的产生,诱导焦亡而不是凋亡,从而促进肿瘤抗原的释放和免疫激活。进一步研究表明,MnO2还原产生的Mn2+激活cGAS-STING通路,促进树突状细胞成熟,巨噬细胞向M1表型极化,增强CD8+ T细胞浸润,同时减少调节性T细胞群,有效地将免疫抑制肿瘤转化为免疫活性环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信