Amplified copper ion interference and immunomodulation using self-thermophoretic nanomotors to treat refractory implant-associated biofilm infections.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Liuliang He,Qiyong Pan,Mingfei Li,Zhichao Wang,Long Wang,Chi Zhang,Zhi-Hao Wang,Jinjin Shi,Daifeng Li
{"title":"Amplified copper ion interference and immunomodulation using self-thermophoretic nanomotors to treat refractory implant-associated biofilm infections.","authors":"Liuliang He,Qiyong Pan,Mingfei Li,Zhichao Wang,Long Wang,Chi Zhang,Zhi-Hao Wang,Jinjin Shi,Daifeng Li","doi":"10.1038/s41467-025-64064-z","DOIUrl":null,"url":null,"abstract":"Orthopedic implant-associated biofilm infections (IABIs) are refractory to elimination because of the dense biofilm formation and local immunosuppressive microenvironment. Herein, we propose a copper-based therapeutic strategy to treat IABIs. Initially, the Janus bisphere nanostructure is fabricated using mesoporous silicon nanoparticle (MSN) with gold nanoparticle. Subsequently, copper peroxide (CP) nanodots are encapsulated within the MSN to form the final nanomotor Motor@CP. Our Motor@CP exhibits remarkable autonomous movement through near-infrared (NIR)-propelled self-thermophoretic propulsion, effectively penetrating dense biofilms and delivering CP. Notably, the acidic microenvironment facilitates CP decomposition into copper(II) and hydrogen peroxide. This process further generates hydroxyl radicals (•OH), extensively destroying biofilm integrity and enhancing intracellular uptake of copper ions that trigger bacterial cuproptosis-like death. Furthermore, Motor@CP markedly reprograms infiltrating macrophages toward pro-inflammatory phenotypes, thereby promoting an antimicrobial immune response. Overall, this presents a promising approach that leverages amplified copper ion interference and macrophage reprogramming to combat refractory orthopedic IABIs.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"114 1","pages":"9009"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64064-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Orthopedic implant-associated biofilm infections (IABIs) are refractory to elimination because of the dense biofilm formation and local immunosuppressive microenvironment. Herein, we propose a copper-based therapeutic strategy to treat IABIs. Initially, the Janus bisphere nanostructure is fabricated using mesoporous silicon nanoparticle (MSN) with gold nanoparticle. Subsequently, copper peroxide (CP) nanodots are encapsulated within the MSN to form the final nanomotor Motor@CP. Our Motor@CP exhibits remarkable autonomous movement through near-infrared (NIR)-propelled self-thermophoretic propulsion, effectively penetrating dense biofilms and delivering CP. Notably, the acidic microenvironment facilitates CP decomposition into copper(II) and hydrogen peroxide. This process further generates hydroxyl radicals (•OH), extensively destroying biofilm integrity and enhancing intracellular uptake of copper ions that trigger bacterial cuproptosis-like death. Furthermore, Motor@CP markedly reprograms infiltrating macrophages toward pro-inflammatory phenotypes, thereby promoting an antimicrobial immune response. Overall, this presents a promising approach that leverages amplified copper ion interference and macrophage reprogramming to combat refractory orthopedic IABIs.
利用自热泳纳米马达放大铜离子干扰和免疫调节治疗难治性植入物相关生物膜感染。
由于密集的生物膜形成和局部免疫抑制微环境,骨科植入物相关生物膜感染(IABIs)难以消除。在此,我们提出了一种基于铜的治疗策略来治疗iabi。首先,采用介孔硅纳米颗粒(MSN)和金纳米颗粒制备双球结构。随后,过氧化铜(CP)纳米点被封装在MSN中形成最终的纳米马达Motor@CP。我们的Motor@CP通过近红外(NIR)推进的自热电泳推进表现出显著的自主运动,有效地穿透致密的生物膜并传递CP。值得注意的是,酸性微环境有助于CP分解成铜(II)和过氧化氢。这一过程进一步产生羟基自由基(•OH),广泛破坏生物膜的完整性,增强细胞内铜离子的摄取,从而引发细菌铜中毒样死亡。此外,Motor@CP显著地将浸润的巨噬细胞重编程为促炎表型,从而促进抗微生物免疫反应。总的来说,这提出了一种很有前途的方法,利用放大铜离子干扰和巨噬细胞重编程来对抗难治性骨科iabi。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信