Phase transition driven tough hydrogel ionic thermoelectric cell with giant thermopower.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xiaofang Shi,Yingjie Li,Nan Shi,Chengyu Ji,Lei Hou,Yingkun Shi,Jianyao Xu,Yarong Lan,Qingcong Wei,Guanglei Ma,Peiyi Wu,Zhiguo Hu
{"title":"Phase transition driven tough hydrogel ionic thermoelectric cell with giant thermopower.","authors":"Xiaofang Shi,Yingjie Li,Nan Shi,Chengyu Ji,Lei Hou,Yingkun Shi,Jianyao Xu,Yarong Lan,Qingcong Wei,Guanglei Ma,Peiyi Wu,Zhiguo Hu","doi":"10.1038/s41467-025-64054-1","DOIUrl":null,"url":null,"abstract":"The application of quasi-solid ionic thermoelectric (i-TE) cells holds great potential for powering ubiquitous wearable electronics without the need for cables or batteries. However, their practical application is restricted by low thermopower. Herein, a temperature-responsive supramolecular hydrogel, P(N-acryloylsemicarbazide-co-acrylic acid) (PNA), has been developed as a i-TE cell that integrates good mechanical and electrochemical properties. The volume phase transition (VPT) of PNA i-TE cell can generate a substantial ion entropy difference, thereby enhancing both the redox reaction efficiency and ionic thermodiffusion rate. A single PNA i-TE cell can generate a thermopower of 2.04 volts with a temperature difference of 50 K. The Seebeck coefficient (Se), specific output power density ( P max / ( Δ T ) 2 ) and figure of merit (ZT) of PNA i-TE cell can reach up to 40.9 mV K-1, 35.2 mW m-2 K-2 and 1.33 respectively. This ionic hydrogel is promising for the design of high performance polymer based i-TE cells in an environmentally friendly and cost-effective manner.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"37 1","pages":"9002"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64054-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The application of quasi-solid ionic thermoelectric (i-TE) cells holds great potential for powering ubiquitous wearable electronics without the need for cables or batteries. However, their practical application is restricted by low thermopower. Herein, a temperature-responsive supramolecular hydrogel, P(N-acryloylsemicarbazide-co-acrylic acid) (PNA), has been developed as a i-TE cell that integrates good mechanical and electrochemical properties. The volume phase transition (VPT) of PNA i-TE cell can generate a substantial ion entropy difference, thereby enhancing both the redox reaction efficiency and ionic thermodiffusion rate. A single PNA i-TE cell can generate a thermopower of 2.04 volts with a temperature difference of 50 K. The Seebeck coefficient (Se), specific output power density ( P max / ( Δ T ) 2 ) and figure of merit (ZT) of PNA i-TE cell can reach up to 40.9 mV K-1, 35.2 mW m-2 K-2 and 1.33 respectively. This ionic hydrogel is promising for the design of high performance polymer based i-TE cells in an environmentally friendly and cost-effective manner.
相变驱动的强韧水凝胶离子热电电池,具有巨大的热功率。
准固体离子热电(i-TE)电池的应用具有巨大的潜力,可以在不需要电缆或电池的情况下为无处不在的可穿戴电子产品供电。然而,它们的实际应用受到低热功率的限制。在此,一种温度响应的超分子水凝胶P(n -丙烯酰氨基脲-共丙烯酸)(PNA)已被开发为集成了良好的机械和电化学性能的i-TE电池。PNA i-TE电池的体积相变(VPT)可以产生较大的离子熵差,从而提高氧化还原反应效率和离子热扩散速率。单个PNA i-TE电池可以产生2.04伏的热电,温差为50 K。PNA i-TE电池的塞贝克系数(Se)、比输出功率密度(P max / (Δ T) 2)和品质系数(ZT)分别可达40.9 mV K-1、35.2 mW m-2 K-2和1.33。这种离子水凝胶有望以环保和经济的方式设计高性能聚合物基i-TE电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信