Christian Gosti,Zekra Mousavi,Luca Fiore,Vincenzo Mazzaracchio,Federico Olivieri,Gennaro Gentile,Fabiana Arduini,Johan Bobacka
{"title":"Carbon Black and PEDOT:PSS in a Synergistic Solid Contact for Reliable Printed Potentiometric Sensors.","authors":"Christian Gosti,Zekra Mousavi,Luca Fiore,Vincenzo Mazzaracchio,Federico Olivieri,Gennaro Gentile,Fabiana Arduini,Johan Bobacka","doi":"10.1021/acssensors.5c02226","DOIUrl":null,"url":null,"abstract":"Printed potentiometric sensors require reliable solid contacts to provide stable and reproducible ion-selective electrodes. However, hampering fabrications and unfavorable maintenance often hinder their breakthrough on a commercial scale. Herein, we develop a solid-contact calcium-selective screen-printed electrode harnessing straightforward manufacturing based on the combination of carbon black (CB) and poly(3,4-ethylene dioxythiophene) doped with poly(sodium 4-styrenesulfonate) (PEDOT:PSS) as an ion-to-electron transducer. Drop-casting was used to simply deposit the CB layer, while PEDOT:PSS was rapidly electropolymerized (71 s) onto the working electrode to deliver affordable manufacturing of the printed electrode while ensuring valid potentiometric performance. Subsequently, the ion-selective membrane (ISM) and the polyvinyl butyral (PVB)-based reference membrane were, respectively, drop-cast onto the working electrode and reference electrode (RE). Upon the optimization of solid-contact layers, the solid-contact Ca2+-ISEs were investigated by evaluating their potentiometric performance versus a conventional RE. CB/PEDOT:PSS-modified screen-printed electrodes demonstrated a low-frequency capacitance of 55 μF, and an outstanding standard potential interelectrode reproducibility (±1 mV). The combination of both types of ion-to-electron transducers provided calcium detection in the linear range 10-1-10-7 M with a Nernstian sensitivity (28.3 ± 0.3 mV/decade), ensured over 28 days under dry storage. Furthermore, the absence of the water layer effect was also demonstrated. Lastly, the fully printed platform was assembled to achieve a miniaturized and easily field-deployable potentiometric device, consisting of CB/PEDOT:PSS/ISM configuration and PVB-based reference membrane on the working electrode and the RE, respectively. The resulted all-solid-state sensor revealed a Nernstian sensitivity with a 29.0 ± 0.5 mV/decade slope and a stable signal up to 72 h (drift = -0.2 mV/h). Analysis carried out using commercially available bottled water also demonstrated the sensor successful performance in the determination of calcium ion in real samples.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"114 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.5c02226","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Printed potentiometric sensors require reliable solid contacts to provide stable and reproducible ion-selective electrodes. However, hampering fabrications and unfavorable maintenance often hinder their breakthrough on a commercial scale. Herein, we develop a solid-contact calcium-selective screen-printed electrode harnessing straightforward manufacturing based on the combination of carbon black (CB) and poly(3,4-ethylene dioxythiophene) doped with poly(sodium 4-styrenesulfonate) (PEDOT:PSS) as an ion-to-electron transducer. Drop-casting was used to simply deposit the CB layer, while PEDOT:PSS was rapidly electropolymerized (71 s) onto the working electrode to deliver affordable manufacturing of the printed electrode while ensuring valid potentiometric performance. Subsequently, the ion-selective membrane (ISM) and the polyvinyl butyral (PVB)-based reference membrane were, respectively, drop-cast onto the working electrode and reference electrode (RE). Upon the optimization of solid-contact layers, the solid-contact Ca2+-ISEs were investigated by evaluating their potentiometric performance versus a conventional RE. CB/PEDOT:PSS-modified screen-printed electrodes demonstrated a low-frequency capacitance of 55 μF, and an outstanding standard potential interelectrode reproducibility (±1 mV). The combination of both types of ion-to-electron transducers provided calcium detection in the linear range 10-1-10-7 M with a Nernstian sensitivity (28.3 ± 0.3 mV/decade), ensured over 28 days under dry storage. Furthermore, the absence of the water layer effect was also demonstrated. Lastly, the fully printed platform was assembled to achieve a miniaturized and easily field-deployable potentiometric device, consisting of CB/PEDOT:PSS/ISM configuration and PVB-based reference membrane on the working electrode and the RE, respectively. The resulted all-solid-state sensor revealed a Nernstian sensitivity with a 29.0 ± 0.5 mV/decade slope and a stable signal up to 72 h (drift = -0.2 mV/h). Analysis carried out using commercially available bottled water also demonstrated the sensor successful performance in the determination of calcium ion in real samples.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.