{"title":"S100a9 lactylation triggers neutrophil trafficking and cardiac inflammation in myocardial ischemia/reperfusion injury.","authors":"Xiaoqi Wang,Xiangyu Yan,Ge Mang,Yujia Chen,Shuang Liu,Jiayu Sui,Zhonghua Tong,Penghe Wang,Jingxuan Cui,Qiannan Yang,Yafei Zhang,Dongni Wang,Ping Sun,Weijun Song,Zexi Jin,Ming Shi,Peng Zhao,Jia Yang,Mingyang Liu,Naixin Wang,Tao Chen,Yong Ji,Bo Yu,Maomao Zhang","doi":"10.1172/jci194664","DOIUrl":null,"url":null,"abstract":"Lactylation, a post-translational modification derived from glycolysis, plays a pivotal role in ischemic heart diseases. Neutrophils are predominantly glycolytic cells that trigger intensive inflammation of myocardial ischemia reperfusion (MI/R). However, whether lactylation regulates neutrophil function during MI/R remains unknown. Employing lactyl proteomics analysis, S100a9 was lactylated at lysine 26 (S100a9K26la) in neutrophils, with elevated levels observed in both acute myocardial infarction (AMI) patients and MI/R model mice. S100a9K26la was demonstrated driving the development of MI/R using mutant knock-in mice. Mechanistically, lactylated S100a9 translocated to the nucleus of neutrophils, where it binded to the promoters of migration-related genes, thereby enhancing their transcription as a co-activator and promoting neutrophil migration and cardiac recruitment. Additionally, lactylated S100a9 was released during NETosis, leading to cardiomyocyte death by disrupting mitochondrial function. The enzyme dihydrolipoyllysine-residue acetyltransferase (DLAT) was identified as the lactyltransferase facilitating neutrophil S100a9K26la post-MI/R, a process that could be restrained by α-lipoic acid. Consistently, targeting DLAT/S100a9K26la axis suppressed neutrophil burden and improved cardiac function post-MI/R. In patients with AMI, elevated S100a9K26la levels in plasma were positively correlated with cardiac death. These findings highlight S100a9 lactylation as a potential therapeutic target for MI/R and as a promising biomarker for evaluating poor prognosis of MI/R.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci194664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Lactylation, a post-translational modification derived from glycolysis, plays a pivotal role in ischemic heart diseases. Neutrophils are predominantly glycolytic cells that trigger intensive inflammation of myocardial ischemia reperfusion (MI/R). However, whether lactylation regulates neutrophil function during MI/R remains unknown. Employing lactyl proteomics analysis, S100a9 was lactylated at lysine 26 (S100a9K26la) in neutrophils, with elevated levels observed in both acute myocardial infarction (AMI) patients and MI/R model mice. S100a9K26la was demonstrated driving the development of MI/R using mutant knock-in mice. Mechanistically, lactylated S100a9 translocated to the nucleus of neutrophils, where it binded to the promoters of migration-related genes, thereby enhancing their transcription as a co-activator and promoting neutrophil migration and cardiac recruitment. Additionally, lactylated S100a9 was released during NETosis, leading to cardiomyocyte death by disrupting mitochondrial function. The enzyme dihydrolipoyllysine-residue acetyltransferase (DLAT) was identified as the lactyltransferase facilitating neutrophil S100a9K26la post-MI/R, a process that could be restrained by α-lipoic acid. Consistently, targeting DLAT/S100a9K26la axis suppressed neutrophil burden and improved cardiac function post-MI/R. In patients with AMI, elevated S100a9K26la levels in plasma were positively correlated with cardiac death. These findings highlight S100a9 lactylation as a potential therapeutic target for MI/R and as a promising biomarker for evaluating poor prognosis of MI/R.