Highly porous cryogel composed of bone matrix derived dECM and laponite for vascularized bone regeneration.

Xinyu Wang, Yidi Shi, Xiaomin Li, Chenyuan Gao, Yi Yan, Huijie Leng, Yingjie Yu, Xiaoping Yang, Qing Cai
{"title":"Highly porous cryogel composed of bone matrix derived dECM and laponite for vascularized bone regeneration.","authors":"Xinyu Wang, Yidi Shi, Xiaomin Li, Chenyuan Gao, Yi Yan, Huijie Leng, Yingjie Yu, Xiaoping Yang, Qing Cai","doi":"10.1088/1748-605X/ae10f5","DOIUrl":null,"url":null,"abstract":"<p><p>Regenerating injured bone tissue remains a critical challenge, necessitating the development of functional scaffolds to support the intricate process of neo-bone growth. Various natural and synthetic materials combined with bioactive factors have been explored, but decellularized extracellular matrices (dECM) continue to stand out as excellent scaffolding materials due to their intrinsic bioactivity. In this study, we fabricated cryogel-type scaffolds with interconnected pores from decellularized bone ECM (DBM) after mineral removal. To enhance their angiogenic and osteogenic properties, we incorporated laponite (LAP), which is a kind of lithium magnesium silicate. For improved mechanical strength, the DBM was modified with methacrylic anhydride to enable chemical crosslinking among collagen macromolecules. The addition of LAP further contributed to mechanical reinforcement. The resulting composite cryogel demonstrated exceptional cyclic compressive stability, maintaining structural integrity and mechanical strength under repetitive loading.<i>In vitro</i>assays revealed its significant promotion of vascularization and osteogenic differentiation.<i>In vivo</i>studies using a rat cranial defect model confirmed substantial new bone formation and enhanced regeneration of vascularized bone tissue. These findings highlight the potential of bone-derived dECM materials for effective<i>in situ</i>bone regeneration.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ae10f5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Regenerating injured bone tissue remains a critical challenge, necessitating the development of functional scaffolds to support the intricate process of neo-bone growth. Various natural and synthetic materials combined with bioactive factors have been explored, but decellularized extracellular matrices (dECM) continue to stand out as excellent scaffolding materials due to their intrinsic bioactivity. In this study, we fabricated cryogel-type scaffolds with interconnected pores from decellularized bone ECM (DBM) after mineral removal. To enhance their angiogenic and osteogenic properties, we incorporated laponite (LAP), which is a kind of lithium magnesium silicate. For improved mechanical strength, the DBM was modified with methacrylic anhydride to enable chemical crosslinking among collagen macromolecules. The addition of LAP further contributed to mechanical reinforcement. The resulting composite cryogel demonstrated exceptional cyclic compressive stability, maintaining structural integrity and mechanical strength under repetitive loading.In vitroassays revealed its significant promotion of vascularization and osteogenic differentiation.In vivostudies using a rat cranial defect model confirmed substantial new bone formation and enhanced regeneration of vascularized bone tissue. These findings highlight the potential of bone-derived dECM materials for effectivein situbone regeneration.

由骨基质衍生的dECM和laponite组成的高孔低温凝胶用于血管化骨再生。
损伤骨组织的再生仍然是一个关键的挑战,需要开发功能支架来支持复杂的新骨生长过程。结合生物活性因子的各种天然和合成材料已经被探索,但脱细胞细胞外基质(dECM)由于其固有的生物活性而继续成为优秀的支架材料。在这项研究中,我们从脱细胞骨ECM (DBM)中制备了具有相互连接孔的低温型支架。为了增强其血管生成和成骨的性能,我们加入了硅酸锂镁的一种硅酸锂钙土(LAP)。为了提高机械强度,用甲基丙烯酸酐对DBM进行改性,使胶原大分子之间发生化学交联。LAP的加入进一步增强了机械强度。所得到的复合低温凝胶表现出优异的循环压缩稳定性,在重复载荷下保持结构完整性和机械强度。体外实验显示其对血管化和成骨分化有显著的促进作用。使用大鼠颅骨缺损模型的体内研究证实了大量的新骨形成和增强的血管化骨组织再生。这些发现突出了骨源性dECM材料在原位骨再生方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信