AI reshaping life sciences: intelligent transformation, application challenges, and future convergence in neuroscience, biology, and medicine.

IF 3.2 Q1 HEALTH CARE SCIENCES & SERVICES
Frontiers in digital health Pub Date : 2025-09-23 eCollection Date: 2025-01-01 DOI:10.3389/fdgth.2025.1666415
Jiahuan Gong, Zihao Zhao, Xinxin Niu, Yanan Ji, Hualin Sun, Yuntian Shen, Bingqian Chen, Bei Wu
{"title":"AI reshaping life sciences: intelligent transformation, application challenges, and future convergence in neuroscience, biology, and medicine.","authors":"Jiahuan Gong, Zihao Zhao, Xinxin Niu, Yanan Ji, Hualin Sun, Yuntian Shen, Bingqian Chen, Bei Wu","doi":"10.3389/fdgth.2025.1666415","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid advancement of artificial intelligence (AI) is profoundly transforming research paradigms and clinical practices across neuroscience, biology, and medicine with unprecedented depth and breadth. Leveraging its robust data-processing capabilities, precise pattern recognition techniques, and efficient real-time decision support, AI has catalyzed a paradigm shift toward intelligent, precision-oriented approaches in scientific research and healthcare. This review comprehensively reviews core AI applications within these domains. Within neuroscience, AI advances encompass brain-computer interface (BCI) development/optimization, intelligent analysis of neuroimaging data (e.g., fMRI, EEG), and early prediction/precise diagnosis of neurological disorders. In biological research, AI applications include enhanced gene-editing efficiency (e.g., CRISPR) with off-target effect prediction, genomic big-data interpretation, drug discovery/design (e.g., virtual screening), high-accuracy protein structure prediction (exemplified by AlphaFold), biodiversity monitoring, and ecological conservation strategy optimization. For medical research, AI empowers auxiliary medical image diagnosis (e.g., CT, MRI), pathological analysis, personalized treatment planning, health risk prediction with lifespan health management, and robot-assisted minimally invasive surgery (e.g., da Vinci Surgical System). This review not only synthesizes AI's pivotal role in enhancing research efficiency and overcoming limitations of conventional methodologies, but also critically examines persistent challenges, including data access barriers, algorithmic non-transparency, ethical governance gaps, and talent shortages. Building upon this analysis, we propose a tripartite framework (\"Technology-Ethics-Talent\") to advance intelligent transformation in scientific and medical domains. Through coordinated implementation, AI will catalyze a transition toward efficient, accessible, and sustainable healthcare, ultimately establishing a life-cycle preservation paradigm encompassing curative gene editing, proactive health management, and ecologically intelligent governance.</p>","PeriodicalId":73078,"journal":{"name":"Frontiers in digital health","volume":"7 ","pages":"1666415"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12500557/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdgth.2025.1666415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement of artificial intelligence (AI) is profoundly transforming research paradigms and clinical practices across neuroscience, biology, and medicine with unprecedented depth and breadth. Leveraging its robust data-processing capabilities, precise pattern recognition techniques, and efficient real-time decision support, AI has catalyzed a paradigm shift toward intelligent, precision-oriented approaches in scientific research and healthcare. This review comprehensively reviews core AI applications within these domains. Within neuroscience, AI advances encompass brain-computer interface (BCI) development/optimization, intelligent analysis of neuroimaging data (e.g., fMRI, EEG), and early prediction/precise diagnosis of neurological disorders. In biological research, AI applications include enhanced gene-editing efficiency (e.g., CRISPR) with off-target effect prediction, genomic big-data interpretation, drug discovery/design (e.g., virtual screening), high-accuracy protein structure prediction (exemplified by AlphaFold), biodiversity monitoring, and ecological conservation strategy optimization. For medical research, AI empowers auxiliary medical image diagnosis (e.g., CT, MRI), pathological analysis, personalized treatment planning, health risk prediction with lifespan health management, and robot-assisted minimally invasive surgery (e.g., da Vinci Surgical System). This review not only synthesizes AI's pivotal role in enhancing research efficiency and overcoming limitations of conventional methodologies, but also critically examines persistent challenges, including data access barriers, algorithmic non-transparency, ethical governance gaps, and talent shortages. Building upon this analysis, we propose a tripartite framework ("Technology-Ethics-Talent") to advance intelligent transformation in scientific and medical domains. Through coordinated implementation, AI will catalyze a transition toward efficient, accessible, and sustainable healthcare, ultimately establishing a life-cycle preservation paradigm encompassing curative gene editing, proactive health management, and ecologically intelligent governance.

人工智能重塑生命科学:神经科学、生物学和医学领域的智能转型、应用挑战和未来融合。
人工智能(AI)的快速发展正在以前所未有的深度和广度深刻地改变着神经科学、生物学和医学领域的研究范式和临床实践。利用其强大的数据处理能力、精确的模式识别技术和高效的实时决策支持,人工智能促进了科学研究和医疗保健领域向智能、精确导向方法的范式转变。本文全面回顾了这些领域的核心人工智能应用。在神经科学领域,人工智能的进步包括脑机接口(BCI)的开发/优化、神经成像数据的智能分析(如功能磁共振成像、脑电图)以及神经系统疾病的早期预测/精确诊断。在生物研究中,人工智能的应用包括提高基因编辑效率(如CRISPR)和脱靶效应预测、基因组大数据解释、药物发现/设计(如虚拟筛选)、高精度蛋白质结构预测(如AlphaFold)、生物多样性监测和生态保护策略优化。在医学研究方面,人工智能支持辅助医学图像诊断(如CT、MRI)、病理分析、个性化治疗计划、健康风险预测和终身健康管理,以及机器人辅助的微创手术(如达芬奇手术系统)。这篇综述不仅综合了人工智能在提高研究效率和克服传统方法局限性方面的关键作用,而且还批判性地审视了持续存在的挑战,包括数据访问障碍、算法不透明、道德治理差距和人才短缺。在此分析的基础上,我们提出了一个“技术-伦理-人才”的三方框架,以推进科学和医学领域的智能化转型。通过协调实施,人工智能将促进向高效、可获得和可持续的医疗保健过渡,最终建立一个包括治疗性基因编辑、主动健康管理和生态智能治理在内的生命周期保护范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信