Differentiating BOLD and non-BOLD signals in fMRI time series using cross-cortical depth delay patterns.

Imaging neuroscience (Cambridge, Mass.) Pub Date : 2025-10-03 eCollection Date: 2025-01-01 DOI:10.1162/IMAG.a.910
Jingyuan E Chen, Anna I Blazejewska, Jiawen Fan, Nina E Fultz, Bruce R Rosen, Laura D Lewis, Jonathan R Polimeni
{"title":"Differentiating BOLD and non-BOLD signals in fMRI time series using cross-cortical depth delay patterns.","authors":"Jingyuan E Chen, Anna I Blazejewska, Jiawen Fan, Nina E Fultz, Bruce R Rosen, Laura D Lewis, Jonathan R Polimeni","doi":"10.1162/IMAG.a.910","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past two decades, rapid advancements in magnetic resonance technology have significantly enhanced the imaging resolution of functional Magnetic Resonance Imaging (fMRI), far surpassing its initial capabilities. Beyond mapping brain functional architecture at unprecedented scales, high-spatial-resolution acquisitions have also inspired and enabled several novel analytical strategies that can potentially improve the sensitivity and neuronal specificity of fMRI. With small voxels, one can sample from different levels of the vascular hierarchy within the cerebral cortex and resolve the temporal progression of hemodynamic changes from parenchymal to pial vessels. We propose that this characteristic pattern of temporal progression across cortical depths can aid in distinguishing neurogenic blood-oxygenation-level-dependent (BOLD) signals from typical nuisance factors arising from non-BOLD origins, such as head motion and pulsatility. In this study, we examine the feasibility of applying cross-cortical depth temporal lag (CortiLag) patterns to automatically categorize BOLD and non-BOLD signal components in modern-resolution BOLD-fMRI data. We construct an independent component analysis (ICA)-based framework for fMRI de-noising, analogous to previously proposed multi-echo independent component analysis (ME-ICA), except that here we explore the across-depth instead of across-echo dependence to distinguish BOLD and non-BOLD components. The efficacy of this framework is demonstrated using visual task data at three graded spatiotemporal resolutions (voxel sizes = 1.1, 1.5, and 2.0 mm isotropic at temporal intervals = 1700, 1120, and 928 ms). The proposed CortiLag-ICA framework leverages prior knowledge of the spatiotemporal properties of BOLD-fMRI and serves as an alternative to ME-ICA for cleaning moderate- and high-spatial-resolution fMRI data when multi-echo acquisitions are not available.</p>","PeriodicalId":73341,"journal":{"name":"Imaging neuroscience (Cambridge, Mass.)","volume":"3 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12501242/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging neuroscience (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/IMAG.a.910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past two decades, rapid advancements in magnetic resonance technology have significantly enhanced the imaging resolution of functional Magnetic Resonance Imaging (fMRI), far surpassing its initial capabilities. Beyond mapping brain functional architecture at unprecedented scales, high-spatial-resolution acquisitions have also inspired and enabled several novel analytical strategies that can potentially improve the sensitivity and neuronal specificity of fMRI. With small voxels, one can sample from different levels of the vascular hierarchy within the cerebral cortex and resolve the temporal progression of hemodynamic changes from parenchymal to pial vessels. We propose that this characteristic pattern of temporal progression across cortical depths can aid in distinguishing neurogenic blood-oxygenation-level-dependent (BOLD) signals from typical nuisance factors arising from non-BOLD origins, such as head motion and pulsatility. In this study, we examine the feasibility of applying cross-cortical depth temporal lag (CortiLag) patterns to automatically categorize BOLD and non-BOLD signal components in modern-resolution BOLD-fMRI data. We construct an independent component analysis (ICA)-based framework for fMRI de-noising, analogous to previously proposed multi-echo independent component analysis (ME-ICA), except that here we explore the across-depth instead of across-echo dependence to distinguish BOLD and non-BOLD components. The efficacy of this framework is demonstrated using visual task data at three graded spatiotemporal resolutions (voxel sizes = 1.1, 1.5, and 2.0 mm isotropic at temporal intervals = 1700, 1120, and 928 ms). The proposed CortiLag-ICA framework leverages prior knowledge of the spatiotemporal properties of BOLD-fMRI and serves as an alternative to ME-ICA for cleaning moderate- and high-spatial-resolution fMRI data when multi-echo acquisitions are not available.

利用跨皮质深度延迟模式在fMRI时间序列中区分BOLD和非BOLD信号。
在过去的二十年中,磁共振技术的快速发展大大提高了功能磁共振成像(fMRI)的成像分辨率,远远超过了其最初的能力。除了以前所未有的规模绘制大脑功能结构之外,高空间分辨率的采集也激发了一些新的分析策略,这些策略可能会提高fMRI的灵敏度和神经元特异性。使用小体素,可以从大脑皮层内不同层次的血管分层中取样,并解决从实质血管到脑脊液血管的血流动力学变化的时间进展。我们提出,这种跨越皮质深度的时间进展的特征模式可以帮助区分神经源性血氧水平依赖性(BOLD)信号与非BOLD来源引起的典型干扰因素,如头部运动和脉搏。在这项研究中,我们研究了应用跨皮质深度时间滞后(皮质滞后)模式在现代分辨率BOLD- fmri数据中自动分类BOLD和非BOLD信号成分的可行性。我们构建了一个基于独立分量分析(ICA)的fMRI去噪框架,类似于之前提出的多回波独立分量分析(ME-ICA),除了这里我们探索跨深度而不是跨回波依赖来区分BOLD和非BOLD分量。该框架的有效性通过三种渐变时空分辨率(体素尺寸= 1.1、1.5和2.0 mm,各向同性,时间间隔= 1700、1120和928 ms)的视觉任务数据得到了验证。提出的cortillag - ica框架利用BOLD-fMRI的时空特性的先验知识,在无法获得多回波采集时,作为ME-ICA的替代方案,用于清理中、高空间分辨率的fMRI数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信