{"title":"Advances in Dosimetry and Imaging for <sup>203</sup>Pb and <sup>212</sup>Pb Radiotheranostics.","authors":"Keamogetswe Ramonaheng, Milani Qebetu, Kaluzi Banda, Pryaska Goorhoo, Khomotso Legodi, Sipho Mdanda, Sandile Sibiya, Yonwaba Mzizi, Honest Ndlovu, Joseph Kabunda, Mengdie Yang, Kuangyu Shi, Mike Sathekge","doi":"10.1053/j.semnuclmed.2025.09.006","DOIUrl":null,"url":null,"abstract":"<p><p>Targeted alpha therapy (TAT) with <sup>212</sup>Pb is rapidly emerging as a potent modality for cancer treatment due to the high linear energy transfer and short path length of α-particles, which enable precise tumor cell killing while sparing surrounding healthy tissue. Its elementally identical theranostic partner, <sup>203</sup>Pb, functions as a γ-emitting surrogate for quantitative SPECT imaging, providing essential information for patient-specific dosimetry and treatment planning. Advances in SPECT imaging, ranging from NaI(Tl)-based dual-head systems to CZT multi-detector gamma cameras, have enhanced spatial resolution, quantitative accuracy, and lesion detectability, enabling rapid patient scanning and improved activity quantification for dosimetry. Clinical dosimetry workflows that integrate serial <sup>203</sup>Pb SPECT/CT acquisitions, pharmacokinetic modeling, and image-based activity quantification facilitate reliable generation of time-activity curves and absorbed dose estimates. Organ-level and voxel-based dosimetry, combined with advanced reconstruction and microdosimetric modeling, further refine dose calculations, supporting individualized therapy planning. Collectively, these developments highlight the translational potential of the <sup>203</sup>Pb/<sup>212</sup>Pb theranostic pair. The aim of this review is to provide a comprehensive assessment of <sup>212</sup>Pb-TAT, encompassing clinical applications, surrogate imaging with <sup>203</sup>Pb, gamma camera performance, dosimetry workflows, and predictive activity quantification, illustrating how these advances collectively enable quantitative, patient-specific, and theranostic-integrated radionuclide therapy.</p>","PeriodicalId":21643,"journal":{"name":"Seminars in nuclear medicine","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in nuclear medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1053/j.semnuclmed.2025.09.006","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Targeted alpha therapy (TAT) with 212Pb is rapidly emerging as a potent modality for cancer treatment due to the high linear energy transfer and short path length of α-particles, which enable precise tumor cell killing while sparing surrounding healthy tissue. Its elementally identical theranostic partner, 203Pb, functions as a γ-emitting surrogate for quantitative SPECT imaging, providing essential information for patient-specific dosimetry and treatment planning. Advances in SPECT imaging, ranging from NaI(Tl)-based dual-head systems to CZT multi-detector gamma cameras, have enhanced spatial resolution, quantitative accuracy, and lesion detectability, enabling rapid patient scanning and improved activity quantification for dosimetry. Clinical dosimetry workflows that integrate serial 203Pb SPECT/CT acquisitions, pharmacokinetic modeling, and image-based activity quantification facilitate reliable generation of time-activity curves and absorbed dose estimates. Organ-level and voxel-based dosimetry, combined with advanced reconstruction and microdosimetric modeling, further refine dose calculations, supporting individualized therapy planning. Collectively, these developments highlight the translational potential of the 203Pb/212Pb theranostic pair. The aim of this review is to provide a comprehensive assessment of 212Pb-TAT, encompassing clinical applications, surrogate imaging with 203Pb, gamma camera performance, dosimetry workflows, and predictive activity quantification, illustrating how these advances collectively enable quantitative, patient-specific, and theranostic-integrated radionuclide therapy.
期刊介绍:
Seminars in Nuclear Medicine is the leading review journal in nuclear medicine. Each issue brings you expert reviews and commentary on a single topic as selected by the Editors. The journal contains extensive coverage of the field of nuclear medicine, including PET, SPECT, and other molecular imaging studies, and related imaging studies. Full-color illustrations are used throughout to highlight important findings. Seminars is included in PubMed/Medline, Thomson/ISI, and other major scientific indexes.