Ming Li , Bo Ma , Si Liang , Xuanyi Pan , Jingyi Xie , Hongjie Wang , Jiguang Guo
{"title":"Hydrogen activated the Nrf2/HO pathway to alleviate the cognitive decline in PD Drosophila after long-term sevoflurane exposure","authors":"Ming Li , Bo Ma , Si Liang , Xuanyi Pan , Jingyi Xie , Hongjie Wang , Jiguang Guo","doi":"10.1016/j.ntt.2025.107560","DOIUrl":null,"url":null,"abstract":"<div><div>The demand for surgical and anesthetic care in patients with Parkinson's disease (PD) is projected to increase, because PD is the fastest-growing neurological disorder. Sevoflurane, the most commonly used volatile anesthetic, is neurotoxic to human and animal neonatal brains. Moreover, sevoflurane-based anesthesia can induce postoperative delirium (POD) in patients with PD. Therefore, our study was aimed at finding an effective treatment for sevoflurane-induced neurotoxicity in patients with PD by using a PD-POD <em>Drosophila</em> model. The small gas, hydrogen (H<sub>2</sub>), was found to ameliorate learning and memory impairment, and increase the lifespan of PD flies, after long-term sevoflurane exposure. The performance index of the PD-POD flies increased by 30 % after H<sub>2</sub> inhalation. Moreover, H<sub>2</sub> inhalation decreased oxidative stress levels in PD fly brains, and increased electron transport chain and OXPHOS efficiency, as well as ATP synthesis, thus indicating enhanced mitochondrial function. In addition, PD flies with H<sub>2</sub> inhalation after sevoflurane exposure showed increased nuclear levels of Nrf2 and expression of its downstream target HO. Therefore, H<sub>2</sub> might exert antioxidant effects by activating the Nrf2/HO pathway, thereby decreasing oxidative stress levels and apoptosis in PD fly brains after long-term sevoflurane treatment. Inhalation of H<sub>2</sub> is likely to be an effective and convenient method to alleviate the neurotoxicity effects or POD caused by long-term sevoflurane exposure.</div></div>","PeriodicalId":19144,"journal":{"name":"Neurotoxicology and teratology","volume":"112 ","pages":"Article 107560"},"PeriodicalIF":2.8000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology and teratology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892036225001370","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The demand for surgical and anesthetic care in patients with Parkinson's disease (PD) is projected to increase, because PD is the fastest-growing neurological disorder. Sevoflurane, the most commonly used volatile anesthetic, is neurotoxic to human and animal neonatal brains. Moreover, sevoflurane-based anesthesia can induce postoperative delirium (POD) in patients with PD. Therefore, our study was aimed at finding an effective treatment for sevoflurane-induced neurotoxicity in patients with PD by using a PD-POD Drosophila model. The small gas, hydrogen (H2), was found to ameliorate learning and memory impairment, and increase the lifespan of PD flies, after long-term sevoflurane exposure. The performance index of the PD-POD flies increased by 30 % after H2 inhalation. Moreover, H2 inhalation decreased oxidative stress levels in PD fly brains, and increased electron transport chain and OXPHOS efficiency, as well as ATP synthesis, thus indicating enhanced mitochondrial function. In addition, PD flies with H2 inhalation after sevoflurane exposure showed increased nuclear levels of Nrf2 and expression of its downstream target HO. Therefore, H2 might exert antioxidant effects by activating the Nrf2/HO pathway, thereby decreasing oxidative stress levels and apoptosis in PD fly brains after long-term sevoflurane treatment. Inhalation of H2 is likely to be an effective and convenient method to alleviate the neurotoxicity effects or POD caused by long-term sevoflurane exposure.
期刊介绍:
Neurotoxicology and Teratology provides a forum for publishing new information regarding the effects of chemical and physical agents on the developing, adult or aging nervous system. In this context, the fields of neurotoxicology and teratology include studies of agent-induced alterations of nervous system function, with a focus on behavioral outcomes and their underlying physiological and neurochemical mechanisms. The Journal publishes original, peer-reviewed Research Reports of experimental, clinical, and epidemiological studies that address the neurotoxicity and/or functional teratology of pesticides, solvents, heavy metals, nanomaterials, organometals, industrial compounds, mixtures, drugs of abuse, pharmaceuticals, animal and plant toxins, atmospheric reaction products, and physical agents such as radiation and noise. These reports include traditional mammalian neurotoxicology experiments, human studies, studies using non-mammalian animal models, and mechanistic studies in vivo or in vitro. Special Issues, Reviews, Commentaries, Meeting Reports, and Symposium Papers provide timely updates on areas that have reached a critical point of synthesis, on aspects of a scientific field undergoing rapid change, or on areas that present special methodological or interpretive problems. Theoretical Articles address concepts and potential mechanisms underlying actions of agents of interest in the nervous system. The Journal also publishes Brief Communications that concisely describe a new method, technique, apparatus, or experimental result.