DeepSeek-LLM with Adaptive RAG for Pharmaceutical Dissolution Prediction.

IF 4.3 3区 医学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Leqi Lin, Xingyu Zhou, Kaiyuan Yang, Yang Liu, Xizhong Chen
{"title":"DeepSeek-LLM with Adaptive RAG for Pharmaceutical Dissolution Prediction.","authors":"Leqi Lin, Xingyu Zhou, Kaiyuan Yang, Yang Liu, Xizhong Chen","doi":"10.1007/s11095-025-03932-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This work aims to accelerate and enhance pharmaceutical drug dissolution prediction by integrating advanced Large Language Models (LLMs) and AI-diffusion models to reduce reliance on time-consuming, costly empirical experiments. The framework sets a foundation for broader adoption of generative AI in drug development.</p><p><strong>Methods: </strong>This work introduces a DeepSeek based LLM framework augmented by prompt engineering (zero-shot, few-shot, chain-of-thought) and adaptive weighted retrieval-augmented generation (RAG) to systematize dissolution profile from basic physical properties. Moreover, a diffusion model synthesizes SEM-derived morphological parameters (e.g., particle size, surface area), circumventing error accumulation from multi-instrument characterization workflows. These parameters feed the RAG database, enabling LLM predictions grounded in structure-performance relationships rather than idealized assumptions.</p><p><strong>Results: </strong>Overall, the LLM generated dissolution profile (few-shot chain-of-thought with RAG) provides a good agreement between experimental and the prediction result among others. Sensitivity analysis is investigated to quantify the reliability and stability of the prompt content. Additionally, diffusion-generated structural data from SEM images combined with the LLM's predictive capabilities are tested to connect macro-scale physical properties with microstructural characteristics, achieving a close profile trend with acceptable RMSE and PCC.</p><p><strong>Conclusions: </strong>This study demonstrates the potential of the DeepSeek-based LLM framework to describe the dissolution of drug powders. Among the different system prompt strategies, few-shot chain-of-thought with RAG performs the best dissolution profile among others. While it may overcomplicate straightforward tasks in certain scenarios. The combination of diffusion models successfully bridges AI-driven insights (e.g., dissolution predictions) with physical and structural drug properties (e.g., particle geometry from SEM images).</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-025-03932-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This work aims to accelerate and enhance pharmaceutical drug dissolution prediction by integrating advanced Large Language Models (LLMs) and AI-diffusion models to reduce reliance on time-consuming, costly empirical experiments. The framework sets a foundation for broader adoption of generative AI in drug development.

Methods: This work introduces a DeepSeek based LLM framework augmented by prompt engineering (zero-shot, few-shot, chain-of-thought) and adaptive weighted retrieval-augmented generation (RAG) to systematize dissolution profile from basic physical properties. Moreover, a diffusion model synthesizes SEM-derived morphological parameters (e.g., particle size, surface area), circumventing error accumulation from multi-instrument characterization workflows. These parameters feed the RAG database, enabling LLM predictions grounded in structure-performance relationships rather than idealized assumptions.

Results: Overall, the LLM generated dissolution profile (few-shot chain-of-thought with RAG) provides a good agreement between experimental and the prediction result among others. Sensitivity analysis is investigated to quantify the reliability and stability of the prompt content. Additionally, diffusion-generated structural data from SEM images combined with the LLM's predictive capabilities are tested to connect macro-scale physical properties with microstructural characteristics, achieving a close profile trend with acceptable RMSE and PCC.

Conclusions: This study demonstrates the potential of the DeepSeek-based LLM framework to describe the dissolution of drug powders. Among the different system prompt strategies, few-shot chain-of-thought with RAG performs the best dissolution profile among others. While it may overcomplicate straightforward tasks in certain scenarios. The combination of diffusion models successfully bridges AI-driven insights (e.g., dissolution predictions) with physical and structural drug properties (e.g., particle geometry from SEM images).

基于自适应RAG的DeepSeek-LLM药物溶出度预测
目的:本工作旨在通过整合先进的大语言模型(LLMs)和人工智能扩散模型来加速和增强药物溶出度预测,以减少对耗时、昂贵的实证实验的依赖。该框架为在药物开发中更广泛地采用生成式人工智能奠定了基础。方法:本工作引入了基于DeepSeek的LLM框架,通过快速工程(零弹、少弹、思维链)和自适应加权检索增强生成(RAG)来从基本物理性质系统化溶解谱。此外,扩散模型综合了sem衍生的形态参数(例如,粒度,表面积),避免了多仪器表征工作流程的误差积累。这些参数提供给RAG数据库,使LLM预测基于结构-性能关系,而不是理想化的假设。结果:总体而言,LLM生成的溶出曲线(用RAG生成的少弹链)在实验结果和预测结果之间具有较好的一致性。通过敏感性分析来量化提示内容的可靠性和稳定性。此外,从SEM图像中获得的扩散生成的结构数据结合LLM的预测能力进行了测试,将宏观物理性质与微观结构特征联系起来,获得了具有可接受的RMSE和PCC的接近剖面趋势。结论:本研究证明了基于deepseek的LLM框架在描述药物粉末溶解方面的潜力。在不同的系统提示策略中,使用RAG的短时间思维链在其他策略中表现最好。虽然在某些情况下,它可能会使简单的任务过于复杂。扩散模型的结合成功地将人工智能驱动的见解(例如,溶解预测)与药物的物理和结构特性(例如,SEM图像中的颗粒几何形状)连接起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutical Research
Pharmaceutical Research 医学-化学综合
CiteScore
6.60
自引率
5.40%
发文量
276
审稿时长
3.4 months
期刊介绍: Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to: -(pre)formulation engineering and processing- computational biopharmaceutics- drug delivery and targeting- molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)- pharmacokinetics, pharmacodynamics and pharmacogenetics. Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信