Novel injectable tricalcium silicate composite bone cement with built-in antibacterial protection.

IF 2.5 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Azadeh Saberi, Amir Moeintaghavi, Hossein Bagheri, Sahar Mollazadeh Beidokhti, Mohammad Jalili Nik
{"title":"Novel injectable tricalcium silicate composite bone cement with built-in antibacterial protection.","authors":"Azadeh Saberi, Amir Moeintaghavi, Hossein Bagheri, Sahar Mollazadeh Beidokhti, Mohammad Jalili Nik","doi":"10.1177/08853282251379731","DOIUrl":null,"url":null,"abstract":"<p><p>This investigation examines the influence of calcium sulfate (CaS) and modified nano-hydroxyapatite (mHA) additions on the physicochemical properties, microstructural development, apatite-forming potential, and antibacterial properties of bioactive tricalcium silicate (C<sub>3</sub>S) cement. Although C<sub>3</sub>S cements exhibit inherent antibacterial properties, their efficacy in treating infected bone defects requires enhancement. The release kinetics of vancomycin (VANCO), an antibiotic, and the modified cements' antibacterial efficacy were systematically evaluated. The findings revealed a notable decrease in setting time from 363 to 264 min upon the integration of CaS. The composite cements demonstrated flow properties and injectability that met standard requirements, exceeding 75% at both 2 and 5 min. The modified cements noted Improved compressive strength compared to their unmodified counterparts. Furthermore, the cements promoted the formation of apatite on their surfaces when immersed in phosphate-buffered saline (PBS). Antibacterial evaluations established that VANCO released from the composites effectively impeded bacterial proliferation. These findings suggest that C<sub>3</sub>S cement enhanced with CaS and mHA exhibits superior physicochemical characteristics and bioactivity, thereby establishing it as a promising candidate for cutting-edge bone repair materials.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251379731"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251379731","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This investigation examines the influence of calcium sulfate (CaS) and modified nano-hydroxyapatite (mHA) additions on the physicochemical properties, microstructural development, apatite-forming potential, and antibacterial properties of bioactive tricalcium silicate (C3S) cement. Although C3S cements exhibit inherent antibacterial properties, their efficacy in treating infected bone defects requires enhancement. The release kinetics of vancomycin (VANCO), an antibiotic, and the modified cements' antibacterial efficacy were systematically evaluated. The findings revealed a notable decrease in setting time from 363 to 264 min upon the integration of CaS. The composite cements demonstrated flow properties and injectability that met standard requirements, exceeding 75% at both 2 and 5 min. The modified cements noted Improved compressive strength compared to their unmodified counterparts. Furthermore, the cements promoted the formation of apatite on their surfaces when immersed in phosphate-buffered saline (PBS). Antibacterial evaluations established that VANCO released from the composites effectively impeded bacterial proliferation. These findings suggest that C3S cement enhanced with CaS and mHA exhibits superior physicochemical characteristics and bioactivity, thereby establishing it as a promising candidate for cutting-edge bone repair materials.

新型可注射硅酸三钙复合骨水泥,内置抗菌保护。
本研究考察了硫酸钙(CaS)和改性纳米羟基磷灰石(mHA)的添加对生物活性硅酸三钙(C3S)水泥的理化性质、微观结构发育、磷灰石形成潜力和抗菌性能的影响。尽管C3S骨水泥具有固有的抗菌特性,但其治疗感染性骨缺损的疗效有待提高。系统评价了万古霉素(VANCO)的释放动力学和改性水泥的抗菌效果。结果显示,在整合CaS后,凝固时间从363分钟显著减少到264分钟。复合水泥的流动性能和可注入性均符合标准要求,在2分钟和5分钟内均超过75%。与未改性水泥相比,改性水泥的抗压强度有所提高。此外,当浸入磷酸盐缓冲盐水(PBS)中时,胶结剂促进了其表面磷灰石的形成。抗菌评价表明,从复合材料中释放的VANCO有效地抑制了细菌的增殖。这些研究结果表明,ca和mHA增强的C3S骨水泥具有优越的物理化学特性和生物活性,从而使其成为一种有希望的尖端骨修复材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信