{"title":"Towards oral insulin-controlled release nanomedicine: A review.","authors":"Ayana Kannaghut Puthukudi, Kaladhar Kamalasanan, Prajitha Prabhakaran Ganga, Harika Sapa, Shona Sara Shaji, Sreejith Thrivikraman, Althaf Umar, Sherin Ann, Shine Sadasivan, Praveen Vp, Mishra Narayan Chandra, Hani Harb, Manish Kumar Jeengar","doi":"10.1177/08853282251383026","DOIUrl":null,"url":null,"abstract":"<p><p>Frequent insulin injections remain the primary method for regulating blood glucose levels in individuals with diabetes mellitus; however, patient compliance is often poor. Due to its non-invasive nature, oral insulin delivery, exploring nanomedicine strategies, is considered a highly desirable alternative as an affordable and accessible medicine. However, the physical intestinal barriers and the harsh gastrointestinal environment provide major obstacles to reaching the best possible pharmacological bioavailability of insulin. Insulin's stability, bioavailability, and targeted administration throughout the GI tract can be improved using colloidal nanocarriers, including polymeric nanoparticles, phospholipid vesicles, and lipid-based nanoparticles. These nanocarriers mimic the physiological insulin secretion and improve the pharmacokinetics of insulin by shielding it from enzymatic degradation, facilitating controlled release, and enhancing absorption across the intestinal mucosa. Key parameters such as particle size, surface charge, zeta potential, and polymer-mucin interactions are examined concerning their effects on epithelial transport and enzymatic protection. Strategies such as PEGylation, chitosan functionalization, and bile salt incorporation are discussed with an emphasis on their interfacial engineering potential. Additionally, novel strategies such as glucose-responsive formulations, cell-penetrating peptides, and enzyme inhibitors, and innovative devices like microneedle capsules and SOMA systems have been explored to enhance oral insulin efficacy. This might not, however, be helpful for translation on its own. Another deciding aspect will be the combination of that with distinct pathways. Future perspectives and innovative approaches to enhance the therapeutic potential of nano-driven systems for oral insulin administration are also discussed in this review as an affordable and accessible medicine strategy.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251383026"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251383026","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Frequent insulin injections remain the primary method for regulating blood glucose levels in individuals with diabetes mellitus; however, patient compliance is often poor. Due to its non-invasive nature, oral insulin delivery, exploring nanomedicine strategies, is considered a highly desirable alternative as an affordable and accessible medicine. However, the physical intestinal barriers and the harsh gastrointestinal environment provide major obstacles to reaching the best possible pharmacological bioavailability of insulin. Insulin's stability, bioavailability, and targeted administration throughout the GI tract can be improved using colloidal nanocarriers, including polymeric nanoparticles, phospholipid vesicles, and lipid-based nanoparticles. These nanocarriers mimic the physiological insulin secretion and improve the pharmacokinetics of insulin by shielding it from enzymatic degradation, facilitating controlled release, and enhancing absorption across the intestinal mucosa. Key parameters such as particle size, surface charge, zeta potential, and polymer-mucin interactions are examined concerning their effects on epithelial transport and enzymatic protection. Strategies such as PEGylation, chitosan functionalization, and bile salt incorporation are discussed with an emphasis on their interfacial engineering potential. Additionally, novel strategies such as glucose-responsive formulations, cell-penetrating peptides, and enzyme inhibitors, and innovative devices like microneedle capsules and SOMA systems have been explored to enhance oral insulin efficacy. This might not, however, be helpful for translation on its own. Another deciding aspect will be the combination of that with distinct pathways. Future perspectives and innovative approaches to enhance the therapeutic potential of nano-driven systems for oral insulin administration are also discussed in this review as an affordable and accessible medicine strategy.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.