Darwin Carranza-Saavedra, Jesús Torres-Bacete, Elodie Bouju, Sylvie Nuccio, Sandra Sordon, Ewa Huszcza, Jarosław Popłoński, René de Vaumas, Juan Nogales
{"title":"Engineering a Robust Escherichia coli W Platform for Scalable Production of Flavonoid-O-Glucosides","authors":"Darwin Carranza-Saavedra, Jesús Torres-Bacete, Elodie Bouju, Sylvie Nuccio, Sandra Sordon, Ewa Huszcza, Jarosław Popłoński, René de Vaumas, Juan Nogales","doi":"10.1111/1751-7915.70226","DOIUrl":null,"url":null,"abstract":"<p>Flavonoids are valuable for pharmaceutical, cosmetic and food applications. However, poor solubility and bioavailability limit their widespread use. Biotechnological glycosylation of flavonoids helps address these limitations, but such bioprocesses remain constrained by the cost and availability of uridine diphosphate glucose (UDPG) and the inherent toxicity of flavonoids. In this study we demonstrate that <i>Escherichia coli</i> W is an optimal microbial host for glycosylation bioprocesses using sucrose as a carbon and UDPG source. <i>Escherichia coli</i> W outperforms the model <i>E. coli</i> K12 strain in terms of flavonoid tolerance and glycosylation capabilities. Optimization of sucrose metabolism through adaptive laboratory evolution (ALE) and targeted metabolic engineering to reroute glucose metabolism to UDPG further enhances <i>E. coli</i> W's glycosylation abilities. We validated our glycosylation platform for bench-scale production of chrysin-7-O-glucoside (C7O), a valuable flavonoid glucoside, overcoming key challenges related to the low solubility and bioavailability of its precursor, chrysin. To address bioavailability limitations, we implemented a fed-batch bioprocess in a 3 L bioreactor which returned 1844 mg/L (3.3 mM) C7O, a specific production rate of 0.17 mmol C7O/g DCW·h and a 25.24 mg/g Yp/s after 76 h. An 82.1% yield (1515 mg/L C7O) post extraction and purification demonstrates the efficiency and scalability of the process for industrial bioproduction.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 10","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70226","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1751-7915.70226","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Flavonoids are valuable for pharmaceutical, cosmetic and food applications. However, poor solubility and bioavailability limit their widespread use. Biotechnological glycosylation of flavonoids helps address these limitations, but such bioprocesses remain constrained by the cost and availability of uridine diphosphate glucose (UDPG) and the inherent toxicity of flavonoids. In this study we demonstrate that Escherichia coli W is an optimal microbial host for glycosylation bioprocesses using sucrose as a carbon and UDPG source. Escherichia coli W outperforms the model E. coli K12 strain in terms of flavonoid tolerance and glycosylation capabilities. Optimization of sucrose metabolism through adaptive laboratory evolution (ALE) and targeted metabolic engineering to reroute glucose metabolism to UDPG further enhances E. coli W's glycosylation abilities. We validated our glycosylation platform for bench-scale production of chrysin-7-O-glucoside (C7O), a valuable flavonoid glucoside, overcoming key challenges related to the low solubility and bioavailability of its precursor, chrysin. To address bioavailability limitations, we implemented a fed-batch bioprocess in a 3 L bioreactor which returned 1844 mg/L (3.3 mM) C7O, a specific production rate of 0.17 mmol C7O/g DCW·h and a 25.24 mg/g Yp/s after 76 h. An 82.1% yield (1515 mg/L C7O) post extraction and purification demonstrates the efficiency and scalability of the process for industrial bioproduction.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes