Strategic Facet Design of in2O3 Catalysts for Enhanced Kinetics and Hydrogen Suppression in Iron-Chromium Flow Batteries.

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yinping Liu, Chao Guo, Fangang Qu, Yida Zhang, Kuo-Wei Huang, Chunming Xu, Jia Guo, Quan Xu, Yingchun Niu
{"title":"Strategic Facet Design of in<sub>2</sub>O<sub>3</sub> Catalysts for Enhanced Kinetics and Hydrogen Suppression in Iron-Chromium Flow Batteries.","authors":"Yinping Liu, Chao Guo, Fangang Qu, Yida Zhang, Kuo-Wei Huang, Chunming Xu, Jia Guo, Quan Xu, Yingchun Niu","doi":"10.1002/advs.202512148","DOIUrl":null,"url":null,"abstract":"<p><p>Iron-chromium redox flow batteries (ICRFBs) show promise for large-scale energy storage, but their performance is hindered by the hydrogen evolution reaction (HER) and sluggish anode Cr<sup>3</sup>⁺/Cr<sup>2</sup>⁺ redox kinetics. Here, an octahedral In<sub>2</sub>O<sub>3</sub> catalyst with exposed high-activity (222) crystal planes is reported, synthesized via high-temperature solution thermal decomposition and grown in situ on carbon cloth. The catalyst is grown in situ on carbon cloth to form a nanostructured indium-based electrode (In<sub>2</sub>O<sub>3</sub>-TCC). Grazing incidence wide-angle X-ray scattering confirms In<sub>2</sub>O<sub>3</sub> phase formation, while XANES reveals abundant oxygen vacancies (Ov) serving as anode reaction active sites. In<sub>2</sub>O<sub>3</sub>-TCC exhibits enhanced electrochemical properties, including a tripled double-layer capacitance (8.92 mF cm<sup>-</sup> <sup>2</sup>), a reduced charge transfer resistance (1.042 Ω), and improved Cr<sup>3</sup>⁺/Cr<sup>2</sup>⁺ kinetics. Density functional theory (DFT) shows that anode HER suppression arises from favorable H⁺ adsorption energy and a high desorption barrier. Furthermore, an in situ differential electrochemical mass spectrometer (DEMS) confirms effective anode HER suppression. The electrode achieves an energy efficiency of 84.02% at 140 mA cm<sup>-</sup> <sup>2</sup> and stable performance over 500 cycles. This work offers a new pathway for designing high-efficiency, long-lifetime ICRFB electrodes.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e12148"},"PeriodicalIF":14.1000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202512148","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Iron-chromium redox flow batteries (ICRFBs) show promise for large-scale energy storage, but their performance is hindered by the hydrogen evolution reaction (HER) and sluggish anode Cr3⁺/Cr2⁺ redox kinetics. Here, an octahedral In2O3 catalyst with exposed high-activity (222) crystal planes is reported, synthesized via high-temperature solution thermal decomposition and grown in situ on carbon cloth. The catalyst is grown in situ on carbon cloth to form a nanostructured indium-based electrode (In2O3-TCC). Grazing incidence wide-angle X-ray scattering confirms In2O3 phase formation, while XANES reveals abundant oxygen vacancies (Ov) serving as anode reaction active sites. In2O3-TCC exhibits enhanced electrochemical properties, including a tripled double-layer capacitance (8.92 mF cm- 2), a reduced charge transfer resistance (1.042 Ω), and improved Cr3⁺/Cr2⁺ kinetics. Density functional theory (DFT) shows that anode HER suppression arises from favorable H⁺ adsorption energy and a high desorption barrier. Furthermore, an in situ differential electrochemical mass spectrometer (DEMS) confirms effective anode HER suppression. The electrode achieves an energy efficiency of 84.02% at 140 mA cm- 2 and stable performance over 500 cycles. This work offers a new pathway for designing high-efficiency, long-lifetime ICRFB electrodes.

强化铁铬液流电池动力学和氢抑制的in2O3催化剂的策略面设计。
铁铬氧化还原液流电池(icrfb)显示出大规模储能的前景,但其性能受到析氢反应(HER)和阳极Cr3 + /Cr2 +氧化还原动力学缓慢的阻碍。本文报道了一种具有高活性(222)晶面的八面体In2O3催化剂,通过高温溶液热分解合成,并在碳布上原位生长。催化剂在碳布上原位生长,形成纳米结构的铟基电极(In2O3-TCC)。掠入射广角x射线散射证实了In2O3相的形成,而XANES显示了丰富的氧空位(Ov)作为阳极反应的活性位点。In2O3-TCC表现出增强的电化学性能,包括三倍双层电容(8.92 mF cm- 2)、降低的电荷转移电阻(1.042 Ω)和改进的Cr3 + /Cr2 +动力学。密度泛函理论(DFT)表明,阳极HER抑制源于有利的H +吸附能和高的脱附势垒。此外,原位差分电化学质谱仪(dms)证实了阳极HER的有效抑制。该电极在140 mA cm- 2下的能量效率为84.02%,并且在500次循环中性能稳定。这项工作为设计高效率、长寿命的ICRFB电极提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信