Modulating Oxygen Transfer via A-Site Doping in LaFeO3 for Coke-Resistant Chemical Looping Steam Methane Reforming.

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-10-08 DOI:10.1002/cssc.202501667
Jeongin Ha, Hyeon Seok Kim, Hyunjung Kim, Yikyeom Kim, Surya Ayuati Ning Asih, Jae W Lee
{"title":"Modulating Oxygen Transfer via A-Site Doping in LaFeO<sub>3</sub> for Coke-Resistant Chemical Looping Steam Methane Reforming.","authors":"Jeongin Ha, Hyeon Seok Kim, Hyunjung Kim, Yikyeom Kim, Surya Ayuati Ning Asih, Jae W Lee","doi":"10.1002/cssc.202501667","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical looping steam methane reforming (CL-SMR) is a promising technology for the simultaneous production of high-purity hydrogen and syngas without the need for external gas separation units. This study evaluates a series of A-site doped perovskite-type oxygen carriers, La<sub>0.8</sub>A<sub>0.2</sub>FeO<sub>3</sub> (A = Ca, Sr, Ba), to investigate the influence of alkaline earth metal doping on redox behavior and catalytic performance in CL-SMR. Substituting divalent cations at the A-site effectively promotes oxygen vacancy formation and enhances lattice oxygen transfer. Among the evaluated oxygen carriers, Sr-doped LaFeO<sub>3</sub> (La<sub>0.8</sub>Sr<sub>0.2</sub>FeO<sub>3</sub>) exhibits the most favorable performance. This is attributed to the optimal concentration of oxygen vacancies, which improved oxygen transfer, as confirmed by X-ray photoelectron spectroscopy, cerimetric titration, and O<sub>2</sub>-temperature programmed desorption. While undoped LaFeO<sub>3</sub> (LF) exhibits the highest methane activation, its limited oxygen mobility leads to severe coke formation. Enhanced oxygen transfer in La<sub>0.8</sub>Sr<sub>0.2</sub>FeO<sub>3</sub> effectively suppresses carbon deposition, while it shows the highest CO and hydrogen production. It achieves consistently high CO and H<sub>2</sub> yields (6.22-6.51 and 6.48-6.69 mmol/g<sub>cat</sub>, respectively) and demonstrates excellent stability over 50 redox cycles.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501667"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501667","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical looping steam methane reforming (CL-SMR) is a promising technology for the simultaneous production of high-purity hydrogen and syngas without the need for external gas separation units. This study evaluates a series of A-site doped perovskite-type oxygen carriers, La0.8A0.2FeO3 (A = Ca, Sr, Ba), to investigate the influence of alkaline earth metal doping on redox behavior and catalytic performance in CL-SMR. Substituting divalent cations at the A-site effectively promotes oxygen vacancy formation and enhances lattice oxygen transfer. Among the evaluated oxygen carriers, Sr-doped LaFeO3 (La0.8Sr0.2FeO3) exhibits the most favorable performance. This is attributed to the optimal concentration of oxygen vacancies, which improved oxygen transfer, as confirmed by X-ray photoelectron spectroscopy, cerimetric titration, and O2-temperature programmed desorption. While undoped LaFeO3 (LF) exhibits the highest methane activation, its limited oxygen mobility leads to severe coke formation. Enhanced oxygen transfer in La0.8Sr0.2FeO3 effectively suppresses carbon deposition, while it shows the highest CO and hydrogen production. It achieves consistently high CO and H2 yields (6.22-6.51 and 6.48-6.69 mmol/gcat, respectively) and demonstrates excellent stability over 50 redox cycles.

通过a -位掺杂调节LaFeO3中氧转移用于抗焦化化学环蒸汽甲烷重整。
化学循环蒸汽甲烷重整(CL-SMR)是一种很有前途的技术,可以在不需要外部气体分离装置的情况下同时生产高纯氢气和合成气。本研究评价了一系列a位掺杂钙钛矿型氧载体La0.8A0.2FeO3 (a = Ca, Sr, Ba),以研究碱土金属掺杂对CL-SMR中氧化还原行为和催化性能的影响。在a位取代二价阳离子能有效促进氧空位的形成,增强晶格氧转移。在评价的氧载体中,掺sr的LaFeO3 (La0.8Sr0.2FeO3)表现出最好的性能。x射线光电子能谱、铈滴定和o2温度程序解吸证实,这是由于氧空位的最佳浓度改善了氧转移。虽然未掺杂的LaFeO3 (LF)表现出最高的甲烷活性,但其有限的氧迁移率导致严重的焦炭形成。La0.8Sr0.2FeO3中氧转移的增强有效抑制了碳沉积,同时CO和氢气产量最高。它可以获得持续的高CO和H2产率(分别为6.22-6.51和6.48-6.69 mmol/gcat),并且在50个氧化还原循环中表现出优异的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信