Isaac C.D. Lenton, Felix Pertl, Lubuna Shafeek, Scott R. Waitukaitis
{"title":"A Duality Between Surface Charge and Work Function in Scanning Kelvin Probe Microscopy","authors":"Isaac C.D. Lenton, Felix Pertl, Lubuna Shafeek, Scott R. Waitukaitis","doi":"10.1002/admi.202500521","DOIUrl":null,"url":null,"abstract":"<p>Scanning Kelvin probe microscopy (SKPM) is a powerful technique for macroscopic imaging of the electrostatic potential above a surface. Though most often used to image work-function variations of conductive surfaces, it can also be used to probe the surface charge on insulating surfaces. In both cases, relating the measured potential to the underlying signal is non-trivial. Here, general relationships are derived between the measured SKPM voltage and the underlying source, revealing either can be cast as a convolution with an appropriately scaled point spread function (PSF). For charge that exists on a thin insulating layer above a conductor, the PSF has the same shape as what would occur from a work-function variation alone, differing by a simple scaling factor. This relationship is confirmed by: (1) backing it out from finite-element simulations of work-function and charge signals, and (2) experimentally comparing the measured PSF from a small work-function target to that from a small charge spot. This scaling factor is further validated by comparing SKPM charge measurements with Faraday cup measurements for highly charged samples from contact-charging experiments. These results highlight a heretofore unappreciated connection between SKPM voltage and charge signals, offering a rigorous recipe to extract either from experimental data.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 19","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500521","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202500521","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Scanning Kelvin probe microscopy (SKPM) is a powerful technique for macroscopic imaging of the electrostatic potential above a surface. Though most often used to image work-function variations of conductive surfaces, it can also be used to probe the surface charge on insulating surfaces. In both cases, relating the measured potential to the underlying signal is non-trivial. Here, general relationships are derived between the measured SKPM voltage and the underlying source, revealing either can be cast as a convolution with an appropriately scaled point spread function (PSF). For charge that exists on a thin insulating layer above a conductor, the PSF has the same shape as what would occur from a work-function variation alone, differing by a simple scaling factor. This relationship is confirmed by: (1) backing it out from finite-element simulations of work-function and charge signals, and (2) experimentally comparing the measured PSF from a small work-function target to that from a small charge spot. This scaling factor is further validated by comparing SKPM charge measurements with Faraday cup measurements for highly charged samples from contact-charging experiments. These results highlight a heretofore unappreciated connection between SKPM voltage and charge signals, offering a rigorous recipe to extract either from experimental data.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.