Organic NIR afterglow with emission wavelengths beyond 800 nm

IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Likai Yuan  (, ), Juqing Gu  (, ), Wentao Yuan  (, ), Ningyuan Zhao  (, ), Changzun Jiang  (, ), Jiaqiang Wang  (, ), Qianqian Li  (, ), Zhen Li  (, )
{"title":"Organic NIR afterglow with emission wavelengths beyond 800 nm","authors":"Likai Yuan \n (,&nbsp;),&nbsp;Juqing Gu \n (,&nbsp;),&nbsp;Wentao Yuan \n (,&nbsp;),&nbsp;Ningyuan Zhao \n (,&nbsp;),&nbsp;Changzun Jiang \n (,&nbsp;),&nbsp;Jiaqiang Wang \n (,&nbsp;),&nbsp;Qianqian Li \n (,&nbsp;),&nbsp;Zhen Li \n (,&nbsp;)","doi":"10.1007/s40843-025-3639-7","DOIUrl":null,"url":null,"abstract":"<div><p>Organic near-infrared (NIR) afterglow has considerable potential for bioimaging applications owing to its deep penetration depth and high signal-to-background ratio (SBR). However, achieving organic afterglow with emission wavelengths above 800 nm is still a significant academic challenge because of the limitations of the energy gap law. Herein, bright NIR afterglow with a wavelength of 820 nm was realized via an intelligent molecular design strategy: alternating electronic donor-acceptor (D-A) structures and multiple S⋯O intramolecular interactions were utilized to enhance the intramolecular charge transfer (ICT) effect and strengthen intramolecular interactions. Additionally, terminal groups and side chains optimize the intermolecular interactions among luminogens to suppress nonradiative transitions. This work provides a promising strategy to achieve efficient NIR afterglow, further promoting its potential applications in bioimaging with deep tissue penetration and high SBR.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 10","pages":"3557 - 3565"},"PeriodicalIF":7.4000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-025-3639-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Organic near-infrared (NIR) afterglow has considerable potential for bioimaging applications owing to its deep penetration depth and high signal-to-background ratio (SBR). However, achieving organic afterglow with emission wavelengths above 800 nm is still a significant academic challenge because of the limitations of the energy gap law. Herein, bright NIR afterglow with a wavelength of 820 nm was realized via an intelligent molecular design strategy: alternating electronic donor-acceptor (D-A) structures and multiple S⋯O intramolecular interactions were utilized to enhance the intramolecular charge transfer (ICT) effect and strengthen intramolecular interactions. Additionally, terminal groups and side chains optimize the intermolecular interactions among luminogens to suppress nonradiative transitions. This work provides a promising strategy to achieve efficient NIR afterglow, further promoting its potential applications in bioimaging with deep tissue penetration and high SBR.

发射波长超过800纳米的有机近红外余辉
有机近红外(NIR)余辉由于其深穿透深度和高信号背景比(SBR),在生物成像领域具有相当大的应用潜力。然而,由于能隙定律的限制,实现发射波长在800 nm以上的有机余辉仍然是一个重大的学术挑战。在此,通过智能分子设计策略实现了波长为820 nm的明亮近红外余光:利用交替的电子供体-受体(D-A)结构和多个S⋯O分子内相互作用来增强分子内电荷转移(ICT)效应并加强分子内相互作用。此外,末端基团和侧链优化了发光原之间的分子间相互作用,抑制了非辐射跃迁。本研究为实现高效的近红外余辉提供了一种有前景的策略,进一步促进了其在具有深层组织穿透性和高SBR的生物成像中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信