Electronic modulation of oxygen anion intercalated perovskite oxides for pseudocapacitance
IF 7.4
2区 材料科学
Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tingting Liang
(, ), Ruilin Hou
(, ), Wei Li
(, ), Fengjiang Chen
(, ), Shan Xu
(, ), Xingbin Yan
(, )
求助PDF
{"title":"Electronic modulation of oxygen anion intercalated perovskite oxides for pseudocapacitance","authors":"Tingting Liang \n (, ), Ruilin Hou \n (, ), Wei Li \n (, ), Fengjiang Chen \n (, ), Shan Xu \n (, ), Xingbin Yan \n (, )","doi":"10.1007/s40843-025-3560-5","DOIUrl":null,"url":null,"abstract":"<p>作为一种新型的赝电容电极材料, 钙钛矿氧化物能够通过氧阴离子插层来储存能量. 其电子结构在决定氧阴离子插层的活性位点以及相关的动力学过程起关键作用, 决定了钙钛矿氧化物的比容量和倍率性能. 因此, 我们提出了影响钙钛矿氧化物电极性能的五个关键因素, 包括氢氧根离子的吸脱附、氧离子迁移速率、氧空位浓度、钙钛矿氧化物的导电性以及界面重新构造, 并揭示了它们与电子结构的内在关联. 本文提出了调控能带结构和电子自旋状态以优化电极性能的代表性策略, 并深入阐述了结构-活性关系. 此外, 关于钙钛矿氧化物电极的挑战性问题及未来发展前景的讨论, 有望为该领域带来前瞻性指导和新发展机遇.</p>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 10","pages":"3511 - 3518"},"PeriodicalIF":7.4000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-025-3560-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
作为一种新型的赝电容电极材料, 钙钛矿氧化物能够通过氧阴离子插层来储存能量. 其电子结构在决定氧阴离子插层的活性位点以及相关的动力学过程起关键作用, 决定了钙钛矿氧化物的比容量和倍率性能. 因此, 我们提出了影响钙钛矿氧化物电极性能的五个关键因素, 包括氢氧根离子的吸脱附、氧离子迁移速率、氧空位浓度、钙钛矿氧化物的导电性以及界面重新构造, 并揭示了它们与电子结构的内在关联. 本文提出了调控能带结构和电子自旋状态以优化电极性能的代表性策略, 并深入阐述了结构-活性关系. 此外, 关于钙钛矿氧化物电极的挑战性问题及未来发展前景的讨论, 有望为该领域带来前瞻性指导和新发展机遇.
氧阴离子插层钙钛矿氧化物赝电容的电子调制
作为一种新型的赝电容电极材料, 钙钛矿氧化物能够通过氧阴离子插层来储存能量. 其电子结构在决定氧阴离子插层的活性位点以及相关的动力学过程起关键作用, 决定了钙钛矿氧化物的比容量和倍率性能. 因此, 我们提出了影响钙钛矿氧化物电极性能的五个关键因素, 包括氢氧根离子的吸脱附、氧离子迁移速率、氧空位浓度、钙钛矿氧化物的导电性以及界面重新构造, 并揭示了它们与电子结构的内在关联. 本文提出了调控能带结构和电子自旋状态以优化电极性能的代表性策略, 并深入阐述了结构-活性关系. 此外, 关于钙钛矿氧化物电极的挑战性问题及未来发展前景的讨论, 有望为该领域带来前瞻性指导和新发展机遇.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
来源期刊
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.