Shunjie Yu
(, ), Xiaohu Hou
(, ), Yan Liu
(, ), Xiaolong Zhao
(, ), Shibing Long
(, )
{"title":"High-performance β-Ga2O3 solar-blind UV/X-ray photodetector enhanced by oxygen vacancy modulation","authors":"Shunjie Yu \n (, ), Xiaohu Hou \n (, ), Yan Liu \n (, ), Xiaolong Zhao \n (, ), Shibing Long \n (, )","doi":"10.1007/s40843-025-3495-8","DOIUrl":null,"url":null,"abstract":"<div><p>High-performance solar-blind ultraviolet (SBUV) and X-ray detectors are essential for scientific research, medical diagnostics, and astronomical imaging. Ga<sub>2</sub>O<sub>3</sub> has emerged as a promising material for detection in this spectral range. However, the distinct mechanisms underlying SBUV and X-ray detection in Ga<sub>2</sub>O<sub>3</sub> remain poorly understood, hindering the optimization of device performance. This study introduces oxygen vacancy modulation to explore these mechanistic differences and enhance comprehensive detection capabilities of Ga<sub>2</sub>O<sub>3</sub> detectors. Highly crystalline β-Ga<sub>2</sub>O<sub>3</sub> films with different oxygen contents were prepared by metal-organic chemical vapor deposition at various oxygen and trimethylgallium (TEGa) precursor ratios (<i>F</i><sub>oxy</sub>/<i>F</i><sub>TEGa</sub>), and corresponding detectors were then fabricated. As the <i>F</i><sub>oxy</sub>/<i>F</i><sub>TEGa</sub> increases, β-Ga<sub>2</sub>O<sub>3</sub> crystal quality improves and oxygen vacancy content decreases. The device based on the film with the lowest oxygen vacancy content exhibits a remarkably low dark current of 30.9 fA. Under SBUV (254 nm), the device demonstrates the photo-to-dark current ratio of 8.7 × 10<sup>8</sup> and a responsivity of 237 A W<sup>−1</sup>. Notably, the detector achieves a sensitivity of 10,736 µC cm<sup>−2</sup> Gy<sub>air</sub><sup>−1</sup> under X-rays, which is 477 times higher than that of conventional a-Se detectors. Additionally, the study clarifies the differential roles of oxygen vacancies in the photoresponse under SBUV and X-ray irradiation, offering insights into how these differences affect both responsivity and response speed. These findings not only deepen the understanding of the SBUV and X-ray photoresponse mechanisms in Ga<sub>2</sub>O<sub>3</sub> detectors, but also provide a stepping stone for the design of detectors with excellent comprehensive performance.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 10","pages":"3695 - 3702"},"PeriodicalIF":7.4000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-025-3495-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-performance solar-blind ultraviolet (SBUV) and X-ray detectors are essential for scientific research, medical diagnostics, and astronomical imaging. Ga2O3 has emerged as a promising material for detection in this spectral range. However, the distinct mechanisms underlying SBUV and X-ray detection in Ga2O3 remain poorly understood, hindering the optimization of device performance. This study introduces oxygen vacancy modulation to explore these mechanistic differences and enhance comprehensive detection capabilities of Ga2O3 detectors. Highly crystalline β-Ga2O3 films with different oxygen contents were prepared by metal-organic chemical vapor deposition at various oxygen and trimethylgallium (TEGa) precursor ratios (Foxy/FTEGa), and corresponding detectors were then fabricated. As the Foxy/FTEGa increases, β-Ga2O3 crystal quality improves and oxygen vacancy content decreases. The device based on the film with the lowest oxygen vacancy content exhibits a remarkably low dark current of 30.9 fA. Under SBUV (254 nm), the device demonstrates the photo-to-dark current ratio of 8.7 × 108 and a responsivity of 237 A W−1. Notably, the detector achieves a sensitivity of 10,736 µC cm−2 Gyair−1 under X-rays, which is 477 times higher than that of conventional a-Se detectors. Additionally, the study clarifies the differential roles of oxygen vacancies in the photoresponse under SBUV and X-ray irradiation, offering insights into how these differences affect both responsivity and response speed. These findings not only deepen the understanding of the SBUV and X-ray photoresponse mechanisms in Ga2O3 detectors, but also provide a stepping stone for the design of detectors with excellent comprehensive performance.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.