An effective reduction method with Caughey damping for spurious oscillations in dynamic problems

IF 2.1 3区 工程技术 Q3 MECHANICS
Dániel Serfözö, Balázs Pere
{"title":"An effective reduction method with Caughey damping for spurious oscillations in dynamic problems","authors":"Dániel Serfözö,&nbsp;Balázs Pere","doi":"10.1007/s11012-025-02036-9","DOIUrl":null,"url":null,"abstract":"<div><p>The numerical solution of dynamic problems often results spurious oscillations. In order to eliminate them, a damping effect must be included in the numerical scheme. However, the concrete shape of the damping characteristics has a great importance in the efficiency of oscillation reduction. In this article, a novel approach has been introduced with adjustable damping character. The damping effect is exerted as viscous damping according to the formulation of Caughey damping. Using the proposed method, a wide range of damping curves can be approximated with high accuracy. The newly developed method is mainly useful for contact-impact and wave propagation problems.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"60 9","pages":"2927 - 2946"},"PeriodicalIF":2.1000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11012-025-02036-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-025-02036-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The numerical solution of dynamic problems often results spurious oscillations. In order to eliminate them, a damping effect must be included in the numerical scheme. However, the concrete shape of the damping characteristics has a great importance in the efficiency of oscillation reduction. In this article, a novel approach has been introduced with adjustable damping character. The damping effect is exerted as viscous damping according to the formulation of Caughey damping. Using the proposed method, a wide range of damping curves can be approximated with high accuracy. The newly developed method is mainly useful for contact-impact and wave propagation problems.

基于Caughey阻尼的有效减振方法
动态问题的数值解常常产生伪振荡。为了消除它们,必须在数值方案中考虑阻尼效应。然而,阻尼特性的具体形状对减振效率有很大的影响。本文介绍了一种具有可调阻尼特性的新方法。根据考希阻尼的公式,将阻尼作用作为粘性阻尼发挥作用。采用该方法,可以逼近大范围的阻尼曲线,且精度高。新开发的方法主要适用于接触冲击和波传播问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Meccanica
Meccanica 物理-力学
CiteScore
4.70
自引率
3.70%
发文量
151
审稿时长
7 months
期刊介绍: Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics. Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences. Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信