Deciphering CO2 Adsorption Mechanisms at the Atomic Scale in Cellulose and Chitosan Aerogels

IF 4.7 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Daniel Pereira, , , Mirtha A. O. Lourenço, , , Mariana Sardo, , , Armando J. D. Silvestre, , , Ildefonso Marin-Montesinos*, , and , Luís Mafra*, 
{"title":"Deciphering CO2 Adsorption Mechanisms at the Atomic Scale in Cellulose and Chitosan Aerogels","authors":"Daniel Pereira,&nbsp;, ,&nbsp;Mirtha A. O. Lourenço,&nbsp;, ,&nbsp;Mariana Sardo,&nbsp;, ,&nbsp;Armando J. D. Silvestre,&nbsp;, ,&nbsp;Ildefonso Marin-Montesinos*,&nbsp;, and ,&nbsp;Luís Mafra*,&nbsp;","doi":"10.1021/acsapm.5c02075","DOIUrl":null,"url":null,"abstract":"<p >Biopolymer-based aerogels have emerged as promising CO<sub>2</sub> adsorbents for large-scale implementation due to their abundance, renewability, and low cost. However, the CO<sub>2</sub> capture mechanisms of these materials remain poorly understood. In this study, we exploit the structural similarity between cellulose and chitosan to investigate how surface chemistry governs the CO<sub>2</sub> adsorption mechanisms using a combination of solid-state nuclear magnetic resonance (ssNMR) spectroscopy and density functional theory (DFT) modeling. We reveal that cellulose aerogels adsorb CO<sub>2</sub> exclusively via physisorption, whereas chitosan aerogels exhibit both physisorption and chemisorption. Chemical shift analysis, supported by DFT calculations, identifies two chemisorbed species in chitosan: carbamic acid (159.0 ppm) and ammonium carbamate (164.5 ppm). Additionally, ssNMR relaxation measurements reveal three distinct physisorbed CO<sub>2</sub> states (solid, liquid, and gas-like) in both aerogels. By systematically tailoring the amine density (i.e., the interchain distance) in chitosan, we elucidate its influence on the CO<sub>2</sub> chemisorption speciation. Based on well-established principles of polysaccharide chemistry, we engineered a blended cellulose dialdehyde–chitosan aerogel with reduced amino group density. In this material, only the carbamic acid peak was observed, demonstrating that ammonium carbamate formation requires closely spaced amino groups. These findings highlight the critical role of surface functional groups and amine density in dictating the CO<sub>2</sub> adsorption pathways. Our study provides valuable atomic level insights into the structure–function relationships of biopolymer-based sorbents, facilitating their optimized design for CO<sub>2</sub> capture technologies.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 19","pages":"12964–12977"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsapm.5c02075","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.5c02075","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biopolymer-based aerogels have emerged as promising CO2 adsorbents for large-scale implementation due to their abundance, renewability, and low cost. However, the CO2 capture mechanisms of these materials remain poorly understood. In this study, we exploit the structural similarity between cellulose and chitosan to investigate how surface chemistry governs the CO2 adsorption mechanisms using a combination of solid-state nuclear magnetic resonance (ssNMR) spectroscopy and density functional theory (DFT) modeling. We reveal that cellulose aerogels adsorb CO2 exclusively via physisorption, whereas chitosan aerogels exhibit both physisorption and chemisorption. Chemical shift analysis, supported by DFT calculations, identifies two chemisorbed species in chitosan: carbamic acid (159.0 ppm) and ammonium carbamate (164.5 ppm). Additionally, ssNMR relaxation measurements reveal three distinct physisorbed CO2 states (solid, liquid, and gas-like) in both aerogels. By systematically tailoring the amine density (i.e., the interchain distance) in chitosan, we elucidate its influence on the CO2 chemisorption speciation. Based on well-established principles of polysaccharide chemistry, we engineered a blended cellulose dialdehyde–chitosan aerogel with reduced amino group density. In this material, only the carbamic acid peak was observed, demonstrating that ammonium carbamate formation requires closely spaced amino groups. These findings highlight the critical role of surface functional groups and amine density in dictating the CO2 adsorption pathways. Our study provides valuable atomic level insights into the structure–function relationships of biopolymer-based sorbents, facilitating their optimized design for CO2 capture technologies.

纤维素和壳聚糖气凝胶在原子尺度上对CO2的吸附机理的解读
生物聚合物气凝胶由于其丰富、可再生和低成本,已成为大规模实施的有前途的二氧化碳吸附剂。然而,这些材料的二氧化碳捕获机制仍然知之甚少。在这项研究中,我们利用纤维素和壳聚糖之间的结构相似性,利用固态核磁共振(ssNMR)光谱和密度泛函理论(DFT)模型的组合来研究表面化学如何影响二氧化碳的吸附机制。我们发现纤维素气凝胶只通过物理吸附来吸附二氧化碳,而壳聚糖气凝胶同时具有物理吸附和化学吸附。在DFT计算的支持下,化学位移分析确定了壳聚糖中的两种化学吸附物质:氨基甲酸(159.0 ppm)和氨基甲酸铵(164.5 ppm)。此外,ssmr弛豫测量揭示了两种气凝胶中三种不同的物理CO2状态(固态、液态和气态)。通过系统地调整壳聚糖中的胺密度(即链间距离),我们阐明了其对CO2化学吸附形态的影响。基于多糖化学的既定原理,我们设计了一种降低氨基密度的二醛纤维素-壳聚糖混合气凝胶。在这种材料中,只观察到氨基甲酸峰,表明氨基甲酸铵的形成需要紧密间隔的氨基。这些发现强调了表面官能团和胺密度在决定CO2吸附途径中的关键作用。我们的研究为生物聚合物吸附剂的结构-功能关系提供了有价值的原子水平的见解,促进了它们对二氧化碳捕获技术的优化设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信