Tuning Layered Double Hydroxides from Trimetallic to High-Entropy Nanomaterials for Enhanced Oxygen Evolution in Alkaline Environments

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chandrasekaran Pitchai, , , Chao-Fang Huang, , and , Chih-Ming Chen*, 
{"title":"Tuning Layered Double Hydroxides from Trimetallic to High-Entropy Nanomaterials for Enhanced Oxygen Evolution in Alkaline Environments","authors":"Chandrasekaran Pitchai,&nbsp;, ,&nbsp;Chao-Fang Huang,&nbsp;, and ,&nbsp;Chih-Ming Chen*,&nbsp;","doi":"10.1021/acsanm.5c03590","DOIUrl":null,"url":null,"abstract":"<p >Layered double hydroxides (LDHs) enriched with multiple metal elements and high-entropy alloys (HEAs) have gained attention as effective catalysts for the oxygen evolution reaction (OER). In this study, we report the hydrothermal synthesis of high-entropy FeCoCrMnCu (FCCMC) LDHs, aiming to develop cost-efficient and durable electrocatalysts. Extensive material characterization using FE-SEM, HR-TEM, XRD, EDX, and XPS confirmed the successful fabrication of FCCMC LDHs with uniform elemental dispersion and well-defined crystal structure. When tested under alkaline conditions, FCCMC LDHs displayed superior OER performance compared to their ternary (FeCoCr, FCC) and quaternary (FeCoCrMn, FCCM) analogs. Specifically, FCCMC achieved a notably low overpotential of 295 mV at 10 mA cm<sup>–2</sup> and a Tafel slope of 119.5 mV dec<sup>–1</sup>, suggesting more favorable catalytic kinetics. Moreover, the FCCMC catalyst demonstrated impressive operational stability, maintaining activity over 74 h without significant performance loss. Collectively, these results identify FCCMC LDHs as a highly promising candidate for advancing efficient and stable electrocatalysts, supporting future progress in clean and sustainable energy technologies.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 40","pages":"19558–19567"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsanm.5c03590","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c03590","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Layered double hydroxides (LDHs) enriched with multiple metal elements and high-entropy alloys (HEAs) have gained attention as effective catalysts for the oxygen evolution reaction (OER). In this study, we report the hydrothermal synthesis of high-entropy FeCoCrMnCu (FCCMC) LDHs, aiming to develop cost-efficient and durable electrocatalysts. Extensive material characterization using FE-SEM, HR-TEM, XRD, EDX, and XPS confirmed the successful fabrication of FCCMC LDHs with uniform elemental dispersion and well-defined crystal structure. When tested under alkaline conditions, FCCMC LDHs displayed superior OER performance compared to their ternary (FeCoCr, FCC) and quaternary (FeCoCrMn, FCCM) analogs. Specifically, FCCMC achieved a notably low overpotential of 295 mV at 10 mA cm–2 and a Tafel slope of 119.5 mV dec–1, suggesting more favorable catalytic kinetics. Moreover, the FCCMC catalyst demonstrated impressive operational stability, maintaining activity over 74 h without significant performance loss. Collectively, these results identify FCCMC LDHs as a highly promising candidate for advancing efficient and stable electrocatalysts, supporting future progress in clean and sustainable energy technologies.

从三金属到高熵纳米的层状双氢氧化物调整以增强碱性环境下的析氧
富含多种金属元素和高熵合金(HEAs)的层状双氢氧化物(LDHs)作为析氧反应(OER)的有效催化剂受到了广泛的关注。在这项研究中,我们报道了水热合成高熵FeCoCrMnCu (FCCMC) LDHs,旨在开发经济高效且耐用的电催化剂。利用FE-SEM、HR-TEM、XRD、EDX和XPS对材料进行了广泛的表征,证实了FCCMC低密度聚合物的成功制备,具有均匀的元素分散和明确的晶体结构。在碱性条件下测试时,FCCMC LDHs表现出优于三元(FeCoCr, FCC)和四元(FeCoCrMn, FCCM)类似物的OER性能。具体来说,FCCMC在10 mA cm-2下获得了295 mV的过电位,Tafel斜率为119.5 mV dec1,这表明更有利的催化动力学。此外,FCCMC催化剂表现出令人印象深刻的操作稳定性,保持活性超过74 h而没有明显的性能损失。总的来说,这些结果表明FCCMC LDHs是一种非常有前途的候选材料,可以促进高效和稳定的电催化剂,支持清洁和可持续能源技术的未来发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信