Hydrogen Storage Capacities in Nanoporous M2(m-dobdc) Metal–Organic Frameworks at Near Ambient Temperatures

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Himani Joshi,  and , Srimanta Pakhira*, 
{"title":"Hydrogen Storage Capacities in Nanoporous M2(m-dobdc) Metal–Organic Frameworks at Near Ambient Temperatures","authors":"Himani Joshi,&nbsp; and ,&nbsp;Srimanta Pakhira*,&nbsp;","doi":"10.1021/acsanm.5c02933","DOIUrl":null,"url":null,"abstract":"<p >Green hydrogen presents a cleaner alternative to petroleum-based energy, with onboard storage challenges addressed by metal–organic frameworks (MOFs). This study evaluates M<sub>2</sub>(<i>m</i>-dobdc) MOFs (M = Mn, Fe, Co, and Ni) for H<sub>2</sub>-storage using Grand Canonical Monte Carlo simulations (GCMC) at five distinct temperatures (77, 160, 198, 233, and 298 K) and pressures of 1–100 bar. The Fe<sub>2</sub>(<i>m</i>-dobdc) MOF achieves a promising volumetric H<sub>2</sub> storage capacity of 51.2 g/L under cryogenic conditions, meeting the target of the Department of Energy, United States of America (USDOE), while the calculated value of the gravimetric uptake is 4.2 wt %, which approaches the USDOE 2025 target of 5.5 wt %. M<sub>2</sub>(<i>m</i>-dobdc) MOF series reflect exceptional volumetric uptake capacities at room temperature, ranging from 11.0 to 12.3 g/L, while gravimetric capacities are moderate, indicating key challenges in physisorption-based nanoporous materials when operating at ambient conditions. Density functional theory (DFT) calculations reveal the heat of H<sub>2</sub> adsorption (<i>Q</i><sub>st</sub>) ranging from −15 to −18 kJ/mol in this M<sub>2</sub>(<i>m</i>-dobdc) MOF series, confirming the reversible physisorption phenomenon. Our results highlight the potential of M<sub>2</sub>(<i>m</i>-dobdc) MOFs for mobile H<sub>2</sub>-storage applications, with deliverable volumetric capacities ranging from 36.3 to 40.8 g/L and gravimetric uptake ranging from 2.7 to 3.4 wt % under a temperature–pressure swing range (77 K/100 bar to 160 K/5 bar). The present investigation indicates that the M<sub>2</sub>(<i>m</i>-dobdc) MOFs have shown advances of the USDOE target and promise to meet the practical onboard hydrogen-storage requirements in automobile applications. Their balanced gravimetric-volumetric capacities make them promising candidates for near-future implementation in green energy systems.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 40","pages":"19167–19178"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c02933","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Green hydrogen presents a cleaner alternative to petroleum-based energy, with onboard storage challenges addressed by metal–organic frameworks (MOFs). This study evaluates M2(m-dobdc) MOFs (M = Mn, Fe, Co, and Ni) for H2-storage using Grand Canonical Monte Carlo simulations (GCMC) at five distinct temperatures (77, 160, 198, 233, and 298 K) and pressures of 1–100 bar. The Fe2(m-dobdc) MOF achieves a promising volumetric H2 storage capacity of 51.2 g/L under cryogenic conditions, meeting the target of the Department of Energy, United States of America (USDOE), while the calculated value of the gravimetric uptake is 4.2 wt %, which approaches the USDOE 2025 target of 5.5 wt %. M2(m-dobdc) MOF series reflect exceptional volumetric uptake capacities at room temperature, ranging from 11.0 to 12.3 g/L, while gravimetric capacities are moderate, indicating key challenges in physisorption-based nanoporous materials when operating at ambient conditions. Density functional theory (DFT) calculations reveal the heat of H2 adsorption (Qst) ranging from −15 to −18 kJ/mol in this M2(m-dobdc) MOF series, confirming the reversible physisorption phenomenon. Our results highlight the potential of M2(m-dobdc) MOFs for mobile H2-storage applications, with deliverable volumetric capacities ranging from 36.3 to 40.8 g/L and gravimetric uptake ranging from 2.7 to 3.4 wt % under a temperature–pressure swing range (77 K/100 bar to 160 K/5 bar). The present investigation indicates that the M2(m-dobdc) MOFs have shown advances of the USDOE target and promise to meet the practical onboard hydrogen-storage requirements in automobile applications. Their balanced gravimetric-volumetric capacities make them promising candidates for near-future implementation in green energy systems.

Abstract Image

近环境温度下纳米多孔M2(m-dobdc)金属有机骨架的储氢能力
绿色氢是石油能源的一种更清洁的替代品,金属有机框架(mof)解决了车载存储的挑战。本研究利用大规范蒙特卡罗模拟(GCMC)在5种不同温度(77、160、198、233和298 K)和1-100 bar压力下评估M2(M -dobdc) mof (M = Mn、Fe、Co和Ni)存储h2的性能。Fe2(m-dobdc) MOF在低温条件下实现了51.2 g/L的体积储氢容量,达到了美国能源部(USDOE)的目标,而重量吸收量的计算值为4.2 wt %,接近USDOE 2025年5.5 wt %的目标。M2(m-dobdc) MOF系列在室温下具有出色的体积吸收能力,范围从11.0到12.3 g/L,而重量容量适中,这表明在环境条件下工作时,物理吸附型纳米多孔材料面临的关键挑战。密度泛函理论(DFT)计算表明,M2(m-dobdc) MOF系列的H2吸附热(Qst)在−15 ~−18 kJ/mol之间,证实了可逆的物理吸附现象。我们的研究结果强调了M2(m-dobdc) mof在移动h2存储应用中的潜力,在温度压力变化范围(77 K/100 bar至160 K/5 bar)下,其可交付的体积容量范围为36.3至40.8 g/L,重量吸收范围为2.7至3.4 wt %。目前的研究表明,M2(m-dobdc) mof已经显示出USDOE目标的进步,并有望满足汽车应用中实际的车载储氢要求。它们平衡的重量-体积容量使它们成为不久的将来在绿色能源系统中实施的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信