Influence of Spike Geometry on Electromagnetic Field Enhancement and the Linear and Nonlinear Plasmonic Properties of Gold Nanourchins

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Domantas Peckus*, , , Fatima Albatoul Kasabji, , , Maziar Moussavi, , , Loic Vidal, , , Hana Boubaker, , , Asta Tamulevičienė, , , Arnaud Spangenberg, , , Tomas Tamulevičius, , , Joel Henzie*, , , Karine Mougin*, , and , Sigitas Tamulevičius*, 
{"title":"Influence of Spike Geometry on Electromagnetic Field Enhancement and the Linear and Nonlinear Plasmonic Properties of Gold Nanourchins","authors":"Domantas Peckus*,&nbsp;, ,&nbsp;Fatima Albatoul Kasabji,&nbsp;, ,&nbsp;Maziar Moussavi,&nbsp;, ,&nbsp;Loic Vidal,&nbsp;, ,&nbsp;Hana Boubaker,&nbsp;, ,&nbsp;Asta Tamulevičienė,&nbsp;, ,&nbsp;Arnaud Spangenberg,&nbsp;, ,&nbsp;Tomas Tamulevičius,&nbsp;, ,&nbsp;Joel Henzie*,&nbsp;, ,&nbsp;Karine Mougin*,&nbsp;, and ,&nbsp;Sigitas Tamulevičius*,&nbsp;","doi":"10.1021/acsanm.5c03297","DOIUrl":null,"url":null,"abstract":"<p >Wet-chemistry-synthesized gold nanourchins (Au NUs), characterized by spiky morphologies with spherical cores, exhibit complex and geometry-dependent plasmonic field enhancement properties distinct from those of symmetrical nanostructures. While plasmon hybridization and mode coupling in branched nanostructures have been broadly studied, the specific optical behavior of Au NUs─particularly regarding spike length distribution and ultrafast dynamics─remains underexplored. This study investigates the steady-state and transient absorption spectra of Au NUs with 50–80 nm cores and 5–20 nm spikes, revealing multiple resonance bands. Transient absorption spectroscopy at various excitation wavelengths confirmed the presence of distinct resonances. Electromagnetic simulations based on TEM tomography-inspired models identified two key extinction bands: a green-wavelength dark mode resonance and a red/nIR spike-induced resonance attributed to the lightning rod effect. Simulations further showed that short, uniformly distributed spikes (aspect ratio ≤1) weakly excite dark resonances, while longer spikes (aspect ratio &gt;1) induce hybridized longitudinal resonances and significant redshifts. Broad spike length distributions result in multiple coexisting resonances, aligning with experimental extinction spectra. A preliminary surface-enhanced Raman scattering study using 2-naphthalene thiol confirmed stronger enhancement for long-spiked Au NUs under 785 nm excitation, validating the field enhancement potential of the identified resonances.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 40","pages":"19322–19332"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c03297","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Wet-chemistry-synthesized gold nanourchins (Au NUs), characterized by spiky morphologies with spherical cores, exhibit complex and geometry-dependent plasmonic field enhancement properties distinct from those of symmetrical nanostructures. While plasmon hybridization and mode coupling in branched nanostructures have been broadly studied, the specific optical behavior of Au NUs─particularly regarding spike length distribution and ultrafast dynamics─remains underexplored. This study investigates the steady-state and transient absorption spectra of Au NUs with 50–80 nm cores and 5–20 nm spikes, revealing multiple resonance bands. Transient absorption spectroscopy at various excitation wavelengths confirmed the presence of distinct resonances. Electromagnetic simulations based on TEM tomography-inspired models identified two key extinction bands: a green-wavelength dark mode resonance and a red/nIR spike-induced resonance attributed to the lightning rod effect. Simulations further showed that short, uniformly distributed spikes (aspect ratio ≤1) weakly excite dark resonances, while longer spikes (aspect ratio >1) induce hybridized longitudinal resonances and significant redshifts. Broad spike length distributions result in multiple coexisting resonances, aligning with experimental extinction spectra. A preliminary surface-enhanced Raman scattering study using 2-naphthalene thiol confirmed stronger enhancement for long-spiked Au NUs under 785 nm excitation, validating the field enhancement potential of the identified resonances.

Abstract Image

尖刺几何形状对金纳米粒子电磁场增强及线性和非线性等离子体特性的影响
湿化学合成的金纳米纳米(Au NUs)具有尖状的球形核结构,具有与对称纳米结构不同的复杂和几何相关的等离子体场增强特性。虽然分支纳米结构中的等离子体杂化和模式耦合已经得到了广泛的研究,但Au - NUs的特定光学行为──特别是关于峰长分布和超快动力学──仍未得到充分的研究。本研究研究了50-80 nm核和5-20 nm峰的Au NUs的稳态和瞬态吸收光谱,揭示了多个共振带。不同激发波长的瞬态吸收光谱证实了不同共振的存在。基于TEM层析成像启发模型的电磁模拟确定了两个关键的消光带:绿色波长暗模式共振和由避雷针效应引起的红/近红外峰诱导共振。模拟进一步表明,短且均匀分布的峰(长径比≤1)弱激发暗共振,而长峰(长径比>;1)诱导杂交纵向共振和显著的红移。宽的峰长分布导致多个共振共存,与实验消光光谱一致。使用2-萘硫醇进行的初步表面增强拉曼散射研究证实,在785 nm激发下,长尖Au NUs具有更强的增强,验证了所识别共振的场增强潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信