Microenvironment Engineering in Pyridyl-Acetylene-Based Porous Organic Polymers for Enhanced H2O2 Photosynthesis

IF 4.7 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuntong Li, , , Jiayi Wan, , , Yongqin Wang, , , Yan Sui, , , Cheng Liu, , , Dongsheng Liu, , , Wei Huang, , , Xiaodan Li, , , Xiahong Xu*, , and , Hong Zhong*, 
{"title":"Microenvironment Engineering in Pyridyl-Acetylene-Based Porous Organic Polymers for Enhanced H2O2 Photosynthesis","authors":"Yuntong Li,&nbsp;, ,&nbsp;Jiayi Wan,&nbsp;, ,&nbsp;Yongqin Wang,&nbsp;, ,&nbsp;Yan Sui,&nbsp;, ,&nbsp;Cheng Liu,&nbsp;, ,&nbsp;Dongsheng Liu,&nbsp;, ,&nbsp;Wei Huang,&nbsp;, ,&nbsp;Xiaodan Li,&nbsp;, ,&nbsp;Xiahong Xu*,&nbsp;, and ,&nbsp;Hong Zhong*,&nbsp;","doi":"10.1021/acsapm.5c02860","DOIUrl":null,"url":null,"abstract":"<p >Artificial photosynthesis of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) from pure water and oxygen, without relying on sacrificial agents, offers a sustainable alternative to the conventional industrial anthraquinone method. Nevertheless, the insufficient proton (H<sup>+</sup>) supply derived from the sluggish water oxidation limits the overall photocatalytic H<sub>2</sub>O<sub>2</sub> production rate. Herein, two pyridyl-acetylene-based porous organic polymers with identical skeletal structures but distinct substituents, namely, CH<sub>3</sub>-TEE-POP and NO<sub>2</sub>-TEE-POP, were synthesized by varying the substituent at the meta-position of the pyridinic nitrogen. The substituent at the meta-position of the pyridinic nitrogen influences the interaction between the pyridinic nitrogen and H<sub>2</sub>O molecules. Density functional theory analysis reveals that the interaction between the N atom in the CH<sub>3</sub>-TEE-POP skeleton and H<sub>2</sub>O molecules is stronger than that in NO<sub>2</sub>-TEE-POP, resulting in a more significant weakening of the O–H bond in water molecules. The weakening of the O–H bond facilitates the 4-electron water oxidation reaction to generate H<sup>+</sup> and O<sub>2</sub> and simultaneously promotes the consumption of holes, leading to an improvement in the overall photocatalytic efficiency. Consequently, CH<sub>3</sub>-TEE-POP achieves an exceptional initial H<sub>2</sub>O<sub>2</sub> production rate of 3183 μmol g<sub>cat</sub><sup>–1</sup> h<sup>–1</sup>, outperforming that of NO<sub>2</sub>-TEE-POP (1609 μmol g<sub>cat</sub><sup>–1</sup> h<sup>–1</sup>). This work highlights the pivotal role of microenvironmental engineering of porous organic polymer photocatalysts for achieving efficient H<sub>2</sub>O<sub>2</sub> production.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 19","pages":"13341–13350"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.5c02860","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial photosynthesis of hydrogen peroxide (H2O2) from pure water and oxygen, without relying on sacrificial agents, offers a sustainable alternative to the conventional industrial anthraquinone method. Nevertheless, the insufficient proton (H+) supply derived from the sluggish water oxidation limits the overall photocatalytic H2O2 production rate. Herein, two pyridyl-acetylene-based porous organic polymers with identical skeletal structures but distinct substituents, namely, CH3-TEE-POP and NO2-TEE-POP, were synthesized by varying the substituent at the meta-position of the pyridinic nitrogen. The substituent at the meta-position of the pyridinic nitrogen influences the interaction between the pyridinic nitrogen and H2O molecules. Density functional theory analysis reveals that the interaction between the N atom in the CH3-TEE-POP skeleton and H2O molecules is stronger than that in NO2-TEE-POP, resulting in a more significant weakening of the O–H bond in water molecules. The weakening of the O–H bond facilitates the 4-electron water oxidation reaction to generate H+ and O2 and simultaneously promotes the consumption of holes, leading to an improvement in the overall photocatalytic efficiency. Consequently, CH3-TEE-POP achieves an exceptional initial H2O2 production rate of 3183 μmol gcat–1 h–1, outperforming that of NO2-TEE-POP (1609 μmol gcat–1 h–1). This work highlights the pivotal role of microenvironmental engineering of porous organic polymer photocatalysts for achieving efficient H2O2 production.

Abstract Image

吡啶乙炔基多孔有机聚合物增强H2O2光合作用的微环境工程研究
从纯水和氧气中提取过氧化氢(H2O2)的人工光合作用,不依赖于牺牲剂,为传统的工业蒽醌方法提供了一种可持续的替代方案。然而,由于缓慢的水氧化导致的质子(H+)供应不足限制了光催化H2O2的总体产率。本文通过改变吡啶氮位上的取代基,合成了两种骨架结构相同但取代基不同的吡啶基有机多孔聚合物CH3-TEE-POP和NO2-TEE-POP。吡啶氮位上的取代基影响了吡啶氮与水分子的相互作用。密度泛函数理论分析表明,CH3-TEE-POP骨架中N原子与H2O分子的相互作用强于NO2-TEE-POP,导致水分子中O-H键的减弱更为明显。O-H键的减弱有利于4电子水氧化反应生成H+和O2,同时促进空穴的消耗,从而提高了整体光催化效率。结果表明,CH3-TEE-POP的初始H2O2产率为3183 μmol gcat-1 h-1,优于NO2-TEE-POP的1609 μmol gcat-1 h-1。这项工作强调了多孔有机聚合物光催化剂微环境工程在实现高效H2O2生产中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信