Magnetoelectric Nanoengineered PEEK Implant for Accelerated Osseointegration

IF 4.7 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Junbo Dang, , , Panqi Sun, , , Junhui Jiang, , , Ruifu Lv, , , Hongbo Wang, , , Minna Ma, , , Nan Zuo, , , Dahui Sun, , and , Mei Zhang*, 
{"title":"Magnetoelectric Nanoengineered PEEK Implant for Accelerated Osseointegration","authors":"Junbo Dang,&nbsp;, ,&nbsp;Panqi Sun,&nbsp;, ,&nbsp;Junhui Jiang,&nbsp;, ,&nbsp;Ruifu Lv,&nbsp;, ,&nbsp;Hongbo Wang,&nbsp;, ,&nbsp;Minna Ma,&nbsp;, ,&nbsp;Nan Zuo,&nbsp;, ,&nbsp;Dahui Sun,&nbsp;, and ,&nbsp;Mei Zhang*,&nbsp;","doi":"10.1021/acsapm.5c02967","DOIUrl":null,"url":null,"abstract":"<p >Polyetheretherketone (PEEK) offers advantages for orthopedic implants but suffers from inherent bioinertness and poor osseointegration. To overcome these limitations, we engineered an electromagnetic active nanoengineered surface on PEEK (PEEK@MSN) that synergistically integrates magnetoelectric activation, bioactive nanotopography, and controlled release of alendronate to direct bone regeneration. In vitro, PEEK@MSN exhibited exceptional osteogenic capabilities, significantly enhancing the differentiation of bone marrow stromal cells (BMSCs), the expression of alkaline phosphatase (ALP), and calcium deposition. We elucidated the osteogenic synergy observed on the nanoengineered surface: the gold layer generates responsive currents in response to a magnetic field, activating voltage-gated calcium channels (VGCC) and directly modulating osteogenic signaling. Meanwhile, the nanotopography of the silica layer (MSN) facilitates cell recruitment and adhesion, while the sustained release of alendronate loaded in MSN delivers potent pharmacological osteogenic stimulation. PEEK@MSN demonstrated superior osseointegration versus pristine PEEK, achieving 4.1-fold higher calcium deposition (2.67% → 16.30%) in vitro and 492% greater trabecular bone formation (0.075 → 0.308 mm) in vivo. This work establishes a strategy for smart orthopedic implants, where magnetoelectrically generated currents, nanotopographical cues, and controlled pharmacological release act cooperatively to achieve actively guided mineralization and bone regeneration.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 19","pages":"13374–13390"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.5c02967","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polyetheretherketone (PEEK) offers advantages for orthopedic implants but suffers from inherent bioinertness and poor osseointegration. To overcome these limitations, we engineered an electromagnetic active nanoengineered surface on PEEK (PEEK@MSN) that synergistically integrates magnetoelectric activation, bioactive nanotopography, and controlled release of alendronate to direct bone regeneration. In vitro, PEEK@MSN exhibited exceptional osteogenic capabilities, significantly enhancing the differentiation of bone marrow stromal cells (BMSCs), the expression of alkaline phosphatase (ALP), and calcium deposition. We elucidated the osteogenic synergy observed on the nanoengineered surface: the gold layer generates responsive currents in response to a magnetic field, activating voltage-gated calcium channels (VGCC) and directly modulating osteogenic signaling. Meanwhile, the nanotopography of the silica layer (MSN) facilitates cell recruitment and adhesion, while the sustained release of alendronate loaded in MSN delivers potent pharmacological osteogenic stimulation. PEEK@MSN demonstrated superior osseointegration versus pristine PEEK, achieving 4.1-fold higher calcium deposition (2.67% → 16.30%) in vitro and 492% greater trabecular bone formation (0.075 → 0.308 mm) in vivo. This work establishes a strategy for smart orthopedic implants, where magnetoelectrically generated currents, nanotopographical cues, and controlled pharmacological release act cooperatively to achieve actively guided mineralization and bone regeneration.

Abstract Image

用于加速骨整合的磁电纳米工程PEEK植入物
聚醚醚酮(PEEK)为骨科植入物提供了优势,但其固有的生物惰性和骨整合性差。为了克服这些限制,我们在PEEK (PEEK@MSN)上设计了一种电磁活性纳米工程表面,该表面协同集成了磁电激活、生物活性纳米形貌和阿仑膦酸钠的可控释放,以直接实现骨再生。在体外,PEEK@MSN表现出特殊的成骨能力,显著增强骨髓基质细胞(BMSCs)的分化、碱性磷酸酶(ALP)的表达和钙沉积。我们阐明了在纳米工程表面观察到的成骨协同作用:金层在磁场作用下产生响应电流,激活电压门控钙通道(VGCC)并直接调节成骨信号。同时,二氧化硅层(MSN)的纳米形貌促进了细胞的招募和粘附,而载于二氧化硅层的阿仑膦酸盐的持续释放提供了强有力的成骨药理刺激。PEEK@MSN与原始PEEK相比表现出更好的骨整合,体外钙沉积(2.67%→16.30%)增加4.1倍,体内小梁骨形成(0.075→0.308 mm)增加492%。这项工作建立了一种智能骨科植入物的策略,其中磁电产生的电流,纳米地形线索和受控的药物释放协同作用,以实现主动引导矿化和骨再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信