Constructing Self-Covalent Locking and Mechanically Tunable Hydrogel Coatings with Antibacterial and Oil–Water Separation Properties

IF 4.7 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yang Yang, , , Zhengdong Lei, , , Shulei Xu, , , Ruiheng Yao, , , Yuan Zhang, , , Jiahui Zhang, , , Jiarui Li, , , Xiaoyong Qiu*, , and , Luxing Wei*, 
{"title":"Constructing Self-Covalent Locking and Mechanically Tunable Hydrogel Coatings with Antibacterial and Oil–Water Separation Properties","authors":"Yang Yang,&nbsp;, ,&nbsp;Zhengdong Lei,&nbsp;, ,&nbsp;Shulei Xu,&nbsp;, ,&nbsp;Ruiheng Yao,&nbsp;, ,&nbsp;Yuan Zhang,&nbsp;, ,&nbsp;Jiahui Zhang,&nbsp;, ,&nbsp;Jiarui Li,&nbsp;, ,&nbsp;Xiaoyong Qiu*,&nbsp;, and ,&nbsp;Luxing Wei*,&nbsp;","doi":"10.1021/acsapm.5c02821","DOIUrl":null,"url":null,"abstract":"<p >To enhance the mechanical robustness and structural stability of hydrogel coatings, this study proposes a reinforcement strategy to fabricate mechanically tunable composite hydrogel coatings made of tannic acid (TA) and poly(vinyl alcohol) (PVA). Ethanol-mediated dynamic modulation of hydrogen-bond cross-linking between TA and PVA enables rapid and uniform hydrogel coating formation. Besides, silica (SiO<sub>2</sub>) nanoparticles are incorporated into the PVA@TA hydrogel coating, which is immersed in a glutaraldehyde (GA) solution to induce covalent cross-linking of hydroxyl groups, thereby constructing PVA@TA-SiO<sub>2</sub>-GA hydrogel coating with a stable multiscale network structure. This strategy optimizes the mechanical properties of the hydrogel coating, achieving a 62.5% enhancement in the fracture stress. Moreover, the fabricated hydrogel coating maintains structural integrity after ultrasonication (400 W, 48 h) and demonstrates efficient oil/water separation performance (flux &gt;4000 L·m<sup>–2</sup>·h<sup>–1</sup>, separation efficiency &gt;90%) and robust antibacterial properties against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> (inhibition rate &gt;99.9%). This study provides a strategy for designing functional hydrogel coatings tailored to environmental demands.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 19","pages":"13310–13320"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.5c02821","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To enhance the mechanical robustness and structural stability of hydrogel coatings, this study proposes a reinforcement strategy to fabricate mechanically tunable composite hydrogel coatings made of tannic acid (TA) and poly(vinyl alcohol) (PVA). Ethanol-mediated dynamic modulation of hydrogen-bond cross-linking between TA and PVA enables rapid and uniform hydrogel coating formation. Besides, silica (SiO2) nanoparticles are incorporated into the PVA@TA hydrogel coating, which is immersed in a glutaraldehyde (GA) solution to induce covalent cross-linking of hydroxyl groups, thereby constructing PVA@TA-SiO2-GA hydrogel coating with a stable multiscale network structure. This strategy optimizes the mechanical properties of the hydrogel coating, achieving a 62.5% enhancement in the fracture stress. Moreover, the fabricated hydrogel coating maintains structural integrity after ultrasonication (400 W, 48 h) and demonstrates efficient oil/water separation performance (flux >4000 L·m–2·h–1, separation efficiency >90%) and robust antibacterial properties against Escherichia coli and Staphylococcus aureus (inhibition rate >99.9%). This study provides a strategy for designing functional hydrogel coatings tailored to environmental demands.

Abstract Image

构建具有抗菌和油水分离性能的自共价锁紧和机械可调水凝胶涂层
为了提高水凝胶涂层的机械坚固性和结构稳定性,本研究提出了一种增强策略,制备由单宁酸(TA)和聚乙烯醇(PVA)组成的机械可调复合水凝胶涂层。乙醇介导的TA和PVA之间氢键交联的动态调节使水凝胶涂层快速均匀地形成。此外,将二氧化硅纳米颗粒掺入PVA@TA水凝胶涂层中,将其浸入戊二醛(GA)溶液中诱导羟基共价交联,从而构建具有稳定多尺度网络结构的PVA@TA-SiO2-GA水凝胶涂层。该策略优化了水凝胶涂层的机械性能,使断裂应力提高了62.5%。此外,制备的水凝胶涂层在超声作用(400 W, 48 h)后保持结构完整,具有高效的油水分离性能(通量4000 L·m-2·h - 1,分离效率90%),对大肠杆菌和金黄色葡萄球菌具有较强的抗菌性能(抑制率99.9%)。这项研究为设计适合环境要求的功能性水凝胶涂层提供了一种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信