Autogenous shrinkage mitigation effect of superabsorbent polymers on alkali-activated GGBFS-FA binary binder without additional water: performance, microstructure and mechanism
IF 13.1 1区 工程技术Q1 CONSTRUCTION & BUILDING TECHNOLOGY
{"title":"Autogenous shrinkage mitigation effect of superabsorbent polymers on alkali-activated GGBFS-FA binary binder without additional water: performance, microstructure and mechanism","authors":"Beifeng Lv, Lizhong Wang, Qiang Zeng, Hengyu Liu, Yujie Li, Zhen Guo","doi":"10.1016/j.cemconres.2025.108058","DOIUrl":null,"url":null,"abstract":"This work seeks to explore the mechanisms of superabsorbent polymers (SAP) in mitigating autogenous shrinkage of an alkali-activated ground granulated blast furnace slag-fly ash (GGBFS-FA) binary binder through elaborate microstructural analysis. The effect patterns of SAP with different dosages (0–0.5 %) and particle sizes (91–631 μm) on the setting time, workability, mechanical strength and autogenous shrinkage were tested. Porosity, pore size distribution, specific surface area, and chemical characteristics were systematically explored. Results revealed that 0.5 % SAP interrupted capillary stress through pore coarsening, thereby reducing autogenous shrinkage by 80 % (3266.57 to 637.89 με). Smaller SAP particle (91 μm) enhanced water release efficiency and promoted calcium silicoaluminate hydrate (C-(A)-S-H) gel formation, while larger SAP particle (631 μm) delayed water release and improved strength with slower shrinkage stabilization. The findings on the water release characteristics and pore coarsening mechanism of SAP deepen our understanding of autogenous shrinkage controls in alkali-activated materials (AAM).","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"86 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cemconres.2025.108058","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This work seeks to explore the mechanisms of superabsorbent polymers (SAP) in mitigating autogenous shrinkage of an alkali-activated ground granulated blast furnace slag-fly ash (GGBFS-FA) binary binder through elaborate microstructural analysis. The effect patterns of SAP with different dosages (0–0.5 %) and particle sizes (91–631 μm) on the setting time, workability, mechanical strength and autogenous shrinkage were tested. Porosity, pore size distribution, specific surface area, and chemical characteristics were systematically explored. Results revealed that 0.5 % SAP interrupted capillary stress through pore coarsening, thereby reducing autogenous shrinkage by 80 % (3266.57 to 637.89 με). Smaller SAP particle (91 μm) enhanced water release efficiency and promoted calcium silicoaluminate hydrate (C-(A)-S-H) gel formation, while larger SAP particle (631 μm) delayed water release and improved strength with slower shrinkage stabilization. The findings on the water release characteristics and pore coarsening mechanism of SAP deepen our understanding of autogenous shrinkage controls in alkali-activated materials (AAM).
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.