Classifying Cool Dwarfs: Comprehensive Spectral Typing of Field and Peculiar Dwarfs Using Machine Learning

Tianxing Zhou, Christopher A. Theissen, S. Jean Feeser, William M. J. Best, Adam J. Burgasser, Kelle L. Cruz, Lexu Zhao
{"title":"Classifying Cool Dwarfs: Comprehensive Spectral Typing of Field and Peculiar Dwarfs Using Machine Learning","authors":"Tianxing Zhou, Christopher A. Theissen, S. Jean Feeser, William M. J. Best, Adam J. Burgasser, Kelle L. Cruz, Lexu Zhao","doi":"10.3847/1538-4357/adfb7d","DOIUrl":null,"url":null,"abstract":"Low-mass stars and brown dwarfs—spectral types (SpTs) M0 and later—play a significant role in studying stellar and substellar processes and demographics, reaching down to planetary-mass objects. Currently, the classification of these sources remains heavily reliant on visual inspection of spectral features, equivalent width measurements, or narrow/wideband spectral indices. Recent advances in machine learning (ML) methods offer automated approaches for spectral typing, which are becoming increasingly important as large spectroscopic surveys such as Gaia, SDSS, and SPHEREx generate data sets containing millions of spectra. We investigate the application of ML in spectral type classification on low-resolution (<italic toggle=\"yes\">R</italic> ∼ 120) near-infrared spectra of M0–T9 dwarfs obtained with the SpeX instrument on the NASA Infrared Telescope Facility. We specifically aim to classify the gravity- and metallicity-dependent subclasses for late-type dwarfs. We used binned fluxes as input features and compared the efficacy of spectral type estimators built using Random Forest (RF), Support Vector Machine, and K-Nearest Neighbor (KNN) models. We tested the influence of different normalizations and analyzed the relative importance of different spectral regions for surface gravity and metallicity subclass classification. Our best-performing model (using KNN) classifies 95.5% ± 0.6% of sources to within ±1 SpT, and assigns surface gravity and metallicity subclasses with 89.5% ± 0.9% accuracy. We test the dependence of signal-to-noise ratio on classification accuracy and find sources with SNR ≳60 have ≳95% accuracy. We also find that <italic toggle=\"yes\">zy </italic>band plays the most prominent role in the RF model, with FeH and TiO having the highest feature importance.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/adfb7d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Low-mass stars and brown dwarfs—spectral types (SpTs) M0 and later—play a significant role in studying stellar and substellar processes and demographics, reaching down to planetary-mass objects. Currently, the classification of these sources remains heavily reliant on visual inspection of spectral features, equivalent width measurements, or narrow/wideband spectral indices. Recent advances in machine learning (ML) methods offer automated approaches for spectral typing, which are becoming increasingly important as large spectroscopic surveys such as Gaia, SDSS, and SPHEREx generate data sets containing millions of spectra. We investigate the application of ML in spectral type classification on low-resolution (R ∼ 120) near-infrared spectra of M0–T9 dwarfs obtained with the SpeX instrument on the NASA Infrared Telescope Facility. We specifically aim to classify the gravity- and metallicity-dependent subclasses for late-type dwarfs. We used binned fluxes as input features and compared the efficacy of spectral type estimators built using Random Forest (RF), Support Vector Machine, and K-Nearest Neighbor (KNN) models. We tested the influence of different normalizations and analyzed the relative importance of different spectral regions for surface gravity and metallicity subclass classification. Our best-performing model (using KNN) classifies 95.5% ± 0.6% of sources to within ±1 SpT, and assigns surface gravity and metallicity subclasses with 89.5% ± 0.9% accuracy. We test the dependence of signal-to-noise ratio on classification accuracy and find sources with SNR ≳60 have ≳95% accuracy. We also find that zy band plays the most prominent role in the RF model, with FeH and TiO having the highest feature importance.
冷矮星分类:利用机器学习对场和特殊矮星进行综合光谱分型
低质量恒星和褐矮星-光谱类型(SpTs) M0及以后-在研究恒星和亚恒星过程和人口统计学方面发挥着重要作用,甚至可以达到行星质量的物体。目前,这些源的分类仍然严重依赖于光谱特征的目视检查、等效宽度测量或窄带/宽带光谱指数。机器学习(ML)方法的最新进展为光谱分类提供了自动化方法,随着Gaia、SDSS和SPHEREx等大型光谱调查产生包含数百万个光谱的数据集,这种方法变得越来越重要。我们研究了ML在光谱类型分类中的应用,对NASA红外望远镜设施上的SpeX仪器获得的M0-T9矮星的低分辨率(R ~ 120)近红外光谱进行了分类。我们的目标是对晚型矮星的重力和金属丰度相关的亚类进行分类。我们使用分类通量作为输入特征,并比较了使用随机森林(RF)、支持向量机(Support Vector Machine)和k -最近邻(KNN)模型构建的谱型估计器的有效性。我们测试了不同归一化的影响,并分析了不同光谱区域对地表重力和金属丰度亚类分类的相对重要性。我们的最佳模型(使用KNN)将95.5%±0.6%的源分类在±1 SpT以内,并以89.5%±0.9%的精度分配表面重力和金属丰度亚类。我们测试了信噪比对分类精度的依赖性,发现信噪比< 60的源具有> 95%的准确率。我们还发现zy波段在RF模型中作用最为突出,其中FeH和TiO的特征重要性最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信