{"title":"Canonical translation factors eIF1A and eIF5B modulate the initiation step of repeat-associated non-AUG translation","authors":"Hayato Ito, Kodai Machida, Yuzo Fujino, Mayuka Hasumi, Soyoka Sakamoto, Yoshitaka Nagai, Hiroaki Imataka, Hideki Taguchi","doi":"10.1093/nar/gkaf994","DOIUrl":null,"url":null,"abstract":"Nucleotide repeat expansions, such as the GGGGCC repeats in C9orf72, associated with C9-ALS, are linked to neurodegenerative diseases. These repeat sequences undergo a noncanonical translation known as repeat-associated non-AUG (RAN) translation. Unlike canonical translation, RAN translation initiates from non-AUG codons and occurs in all reading frames. To identify potential regulators of RAN translation, we employed a bottom-up approach using a human factor-based reconstituted cell-free translation system to recapitulate RAN translation. This approach revealed that omission of either eIF1A or eIF5B enhanced the translation in all reading frames of C9orf72-mediated RAN translation (C9-RAN), suggesting that eIF1A and eIF5B act as repressors of RAN translation. eIF1A and eIF5B are known to contribute to the fidelity of translation initiation. In HEK293T cells, double knockdown of eIF1A and eIF5B further promoted C9-RAN compared to single knockdowns, indicating that these factors regulate C9-RAN through distinct initiation steps. Furthermore, under eIF1A knockdown conditions, the enhancement of RAN translation via the integrated stress response (ISR) was not observed in HEK293T cells, indicating that eIF1A is involved in the ISR-mediated non-AUG translation.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"83 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf994","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nucleotide repeat expansions, such as the GGGGCC repeats in C9orf72, associated with C9-ALS, are linked to neurodegenerative diseases. These repeat sequences undergo a noncanonical translation known as repeat-associated non-AUG (RAN) translation. Unlike canonical translation, RAN translation initiates from non-AUG codons and occurs in all reading frames. To identify potential regulators of RAN translation, we employed a bottom-up approach using a human factor-based reconstituted cell-free translation system to recapitulate RAN translation. This approach revealed that omission of either eIF1A or eIF5B enhanced the translation in all reading frames of C9orf72-mediated RAN translation (C9-RAN), suggesting that eIF1A and eIF5B act as repressors of RAN translation. eIF1A and eIF5B are known to contribute to the fidelity of translation initiation. In HEK293T cells, double knockdown of eIF1A and eIF5B further promoted C9-RAN compared to single knockdowns, indicating that these factors regulate C9-RAN through distinct initiation steps. Furthermore, under eIF1A knockdown conditions, the enhancement of RAN translation via the integrated stress response (ISR) was not observed in HEK293T cells, indicating that eIF1A is involved in the ISR-mediated non-AUG translation.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.