Machine Learning‐Assisted Prediction of Ground‐ and Excited‐State Redox Potentials in Iridium(III) Photocatalysts

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xuetao Li, Liyang Fan, Chenxi Xiong, Wenxin Nie, Yujiao Dong, Bo Zhu, Wei Guan
{"title":"Machine Learning‐Assisted Prediction of Ground‐ and Excited‐State Redox Potentials in Iridium(III) Photocatalysts","authors":"Xuetao Li, Liyang Fan, Chenxi Xiong, Wenxin Nie, Yujiao Dong, Bo Zhu, Wei Guan","doi":"10.1002/anie.202517393","DOIUrl":null,"url":null,"abstract":"This study introduces a data‐driven framework that combines DFT calculations with machine learning to facilitate accurate and scalable predictions of ground‐ and excited‐state redox potentials for iridium(III) photocatalysts. We first constructed independent models to identify key geometric and electronic descriptors governing redox behavior. Shapley additive explanations‐based analyses revealed clear structure–activity relationships, offering mechanistic insights and rational guidance for tuning redox potentials. Based on these insights, we developed unified multi‐output models—Model G for ground‐state and Model E for excited‐state redox potentials—to enable rapid, cost‐effective, and high‐throughput predictions. By modeling oxidation and reduction processes within a shared descriptor space, we can reduce computational overhead while maintaining high predictive accuracy. To assess cross‐metal generalizability, residual transfer learning was applied to osmium (Os) photocatalysts. Using feature‐similar complexes, the resulting transfer models (G‐T, E‐T) achieved performance comparable to Os‐only baselines, demonstrating efficient few‐shot cross‐metal transfer. Collectively, this study establishes an interpretable and transferable machine‐learning framework for photocatalyst discovery. This framework provides a foundation for large‐scale screening and rational design across diverse transition‐metal platforms, accelerating advancements in photoredox catalysis, solar fuel production, and broader sustainable energy technologies.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"27 1","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202517393","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a data‐driven framework that combines DFT calculations with machine learning to facilitate accurate and scalable predictions of ground‐ and excited‐state redox potentials for iridium(III) photocatalysts. We first constructed independent models to identify key geometric and electronic descriptors governing redox behavior. Shapley additive explanations‐based analyses revealed clear structure–activity relationships, offering mechanistic insights and rational guidance for tuning redox potentials. Based on these insights, we developed unified multi‐output models—Model G for ground‐state and Model E for excited‐state redox potentials—to enable rapid, cost‐effective, and high‐throughput predictions. By modeling oxidation and reduction processes within a shared descriptor space, we can reduce computational overhead while maintaining high predictive accuracy. To assess cross‐metal generalizability, residual transfer learning was applied to osmium (Os) photocatalysts. Using feature‐similar complexes, the resulting transfer models (G‐T, E‐T) achieved performance comparable to Os‐only baselines, demonstrating efficient few‐shot cross‐metal transfer. Collectively, this study establishes an interpretable and transferable machine‐learning framework for photocatalyst discovery. This framework provides a foundation for large‐scale screening and rational design across diverse transition‐metal platforms, accelerating advancements in photoredox catalysis, solar fuel production, and broader sustainable energy technologies.
机器学习辅助预测铱(III)光催化剂的基态和激发态氧化还原电位
本研究引入了一个数据驱动的框架,将DFT计算与机器学习相结合,以促进对铱(III)光催化剂基态和激发态氧化还原电位的准确和可扩展的预测。我们首先构建了独立的模型来确定控制氧化还原行为的关键几何和电子描述符。基于Shapley加性解释的分析揭示了清晰的结构-活性关系,为调整氧化还原电位提供了机制见解和合理指导。基于这些见解,我们开发了统一的多输出模型——G模型用于基态,E模型用于激发态氧化还原电位——以实现快速、经济高效和高通量的预测。通过在共享描述符空间中对氧化和还原过程进行建模,我们可以减少计算开销,同时保持较高的预测准确性。为了评估跨金属的泛化性,残余迁移学习应用于锇(Os)光催化剂。使用特征相似的复合物,得到的转移模型(G - T, E - T)的性能可与Os - only基线相媲美,证明了有效的少量交叉金属转移。总的来说,这项研究为光催化剂的发现建立了一个可解释和可转移的机器学习框架。该框架为跨多种过渡金属平台的大规模筛选和合理设计提供了基础,加速了光氧化还原催化、太阳能燃料生产和更广泛的可持续能源技术的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信