{"title":"Teamwork of clustered low-affinity κB sites and accessory factors regulates transcriptional strength of NF-κB RelA dimers","authors":"Shandy Shahabi, Tapan Biswas, Yuting Shen, Rose Sanahmadi, Yaya Zou, Gourisankar Ghosh","doi":"10.1093/nar/gkaf846","DOIUrl":null,"url":null,"abstract":"Non-consensus binding sites of transcription factors (TFs) are often observed within the regulatory elements of genes; however, their effect on transcriptional strength is unclear. Within the promoters and enhancers of NF-κB-responsive genes, we identified clusters of non-consensus κB DNA sites, many exhibiting low affinity for NF-κB in vitro. Deletion of these sites demonstrated their collective critical role in transcription. We explored how these “weak” κB sites exert their influence, especially given the typically low nuclear concentrations of NF-κB. Using proteomics approaches, we identified additional nuclear factors, including other DNA-binding TFs, that could interact with κB site-bound NF-κB RelA. ChIP-seq and RNA-seq analyses suggest that these accessory TFs, referred to as the TF-cofactors of NF-κB, facilitate dynamic recruitment of NF-κB to the clustered weak κB sites. Overall, the occupancy of NF-κB at promoters and enhancers appears to be defined by a collective contribution from all κB sites, both weak and strong, in association with specific cofactors. This congregation of multiple factors within dynamic transcriptional complexes is likely a common feature of transcriptional programs.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"37 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf846","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Non-consensus binding sites of transcription factors (TFs) are often observed within the regulatory elements of genes; however, their effect on transcriptional strength is unclear. Within the promoters and enhancers of NF-κB-responsive genes, we identified clusters of non-consensus κB DNA sites, many exhibiting low affinity for NF-κB in vitro. Deletion of these sites demonstrated their collective critical role in transcription. We explored how these “weak” κB sites exert their influence, especially given the typically low nuclear concentrations of NF-κB. Using proteomics approaches, we identified additional nuclear factors, including other DNA-binding TFs, that could interact with κB site-bound NF-κB RelA. ChIP-seq and RNA-seq analyses suggest that these accessory TFs, referred to as the TF-cofactors of NF-κB, facilitate dynamic recruitment of NF-κB to the clustered weak κB sites. Overall, the occupancy of NF-κB at promoters and enhancers appears to be defined by a collective contribution from all κB sites, both weak and strong, in association with specific cofactors. This congregation of multiple factors within dynamic transcriptional complexes is likely a common feature of transcriptional programs.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.